地殼中最古老岩石的年齡經放射衰變方法鑒定為略小於40億歲。用同樣的方法鑒定月球最古老岩石樣品年齡大致從41億歲直到最古老月岩樣品的45億歲有些隕星樣品也超過了40億歲。綜合所有證據得出太陽係大約是46億歲。由於銀河係已經是150億歲左右,所以太陽及其行星年齡隻及銀河係的三分之一。雖然沒有測定太陽年齡的直接方法,但它作為赫羅圖主序上一顆橙黃色恒星的總體外貌,卻正好是對一顆具有太陽質量,年齡約為46億歲,度過了它一半主序生涯的恒星所該期望的。恒星也有自己的生命史,它們從誕生、成長到衰老,最終走向死亡。它們大小不同,色彩各異,演化的曆程也不盡相同。恒星與生命的聯係不僅表現在它提供了光和熱。實際上構成行星和生命物質的重原子就是在某些恒星生命結束時發生的爆發過程中創造出來的。目前太陽所處的主序星階段,通過對恒星演化及宇宙年代學模型的計算機模擬,已經曆了大約45.7億年。據研究,45.9億年前一團氫分子雲的迅速坍縮形成了一顆第三代第一星族的金牛T星,即太陽。這顆新生的恒星沿著距銀河係中心約27,000光年的近乎圓形軌道運行。太陽在其主序星階段已經到了中年期,在這個階段它核心內部發生的恒星核合成反應將氫聚變為氦。在太陽的核心,每秒能將超過400萬噸物質轉化為能量,生成中微子和太陽輻射。以這個速度,太陽至今已經將大約100個地球質量的物質轉化成了能量。太陽作為主序星的時間大約持續100億年左右。太陽的質量不足以爆發為超新星。在50~60億年後,太陽內的氫消耗殆盡,核心中主要是氦原子,太陽將轉變成紅巨星,當其核心的氫耗盡導致核心收縮及溫度升高時,太陽外層將會膨脹。當其核心溫度升高到100,000,000K時,將發生氦的聚變而產生碳,從而進入漸近巨星分支,而當太陽內的氦元素也全部轉化為碳後,太陽將不再發光,成為一顆死星(Blackdwarf)。地球的最終命運還不清楚。太陽變成紅巨星時,其半徑可超過1天文單位,超出地球目前的軌道,是當前太陽半徑的260倍。然而,屆時作為漸近巨星分支恒星,太陽將會由於恒星風而失去當前質量的約30%,因而行星軌道將會外推。僅就此而言,地球也許會幸免被太陽吞噬。然而,新的研究認為地球還是會因為潮汐作用的影響而被太陽吞掉。即使地球能逃脫被太陽熔融的命運,地球上的水將被蒸發而大氣層也會散逸。實際上,即使太陽還是主序星時,它也會逐步變得更亮,表麵溫度緩慢上升。太陽溫度的上升將在9億年後導致地球表麵溫度升高,造成目前我們所知的生命無法生存。其後再過10億年,地球表麵的水將完全消失。紅巨星階段之後,由熱產生的強烈脈動會拋掉太陽的外殼,形成行星狀星雲。失去外殼後剩下的隻有極為熾熱的恒星核,它將會成為白矮星,在漫長的時間中慢慢冷卻和暗淡下去。這就是中低質量恒星的典型演化過程。地殼中最古老岩石的年齡經放射衰變方法鑒定為略小於40億歲。用同樣的方法鑒定月球最古老岩石樣品年齡大致從41億歲直到最古老月岩樣品的45億歲有些隕星樣品也超過了40億歲。綜合所有證據得出太陽係大約是46億歲。由於銀河係已經是150億歲左右,所以太陽及其行星年齡隻及銀河係的三分之一。雖然沒有測定太陽年齡的直接方法,但它作為赫羅圖主序上一顆橙黃色恒星的總體外貌,卻正好是對一顆具有太陽質量,年齡約為46億歲,度過了它一半主序生涯的恒星所該期望的。恒星也有自己的生命史,它們從誕生、成長到衰老,最終走向死亡。它們大小不同,色彩各異,演化的曆程也不盡相同。恒星與生命的聯係不僅表現在它提供了光和熱。實際上構成行星和生命物質的重原子就是在某些恒星生命結束時發生的爆發過程中創造出來的。目前太陽所處的主序星階段,通過對恒星演化及宇宙年代學模型的計算機模擬,已經曆了大約45.7億年。據研究,45.9億年前一團氫分子雲的迅速坍縮形成了一顆第三代第一星族的金牛T星,即太陽。這顆新生的恒星沿著距銀河係中心約27,000光年的近乎圓形軌道運行。太陽在其主序星階段已經到了中年期,在這個階段它核心內部發生的恒星核合成反應將氫聚變為氦。在太陽的核心,每秒能將超過400萬噸物質轉化為能量,生成中微子和太陽輻射。以這個速度,太陽至今已經將大約100個地球質量的物質轉化成了能量。太陽作為主序星的時間大約持續100億年左右。太陽的質量不足以爆發為超新星。在50~60億年後,太陽內的氫消耗殆盡,核心中主要是氦原子,太陽將轉變成紅巨星,當其核心的氫耗盡導致核心收縮及溫度升高時,太陽外層將會膨脹。當其核心溫度升高到100,000,000K時,將發生氦的聚變而產生碳,從而進入漸近巨星分支,而當太陽內的氦元素也全部轉化為碳後,太陽將不再發光,成為一顆死星(Blackdwarf)。地球的最終命運還不清楚。太陽變成紅巨星時,其半徑可超過1天文單位,超出地球目前的軌道,是當前太陽半徑的260倍。然而,屆時作為漸近巨星分支恒星,太陽將會由於恒星風而失去當前質量的約30%,因而行星軌道將會外推。僅就此而言,地球也許會幸免被太陽吞噬。然而,新的研究認為地球還是會因為潮汐作用的影響而被太陽吞掉。即使地球能逃脫被太陽熔融的命運,地球上的水將被蒸發而大氣層也會散逸。實際上,即使太陽還是主序星時,它也會逐步變得更亮,表麵溫度緩慢上升。太陽溫度的上升將在9億年後導致地球表麵溫度升高,造成目前我們所知的生命無法生存。其後再過10億年,地球表麵的水將完全消失。紅巨星階段之後,由熱產生的強烈脈動會拋掉太陽的外殼,形成行星狀星雲。失去外殼後剩下的隻有極為熾熱的恒星核,它將會成為白矮星,在漫長的時間中慢慢冷卻和暗淡下去。這就是中低質量恒星的典型演化過程。地殼中最古老岩石的年齡經放射衰變方法鑒定為略小於40億歲。用同樣的方法鑒定月球最古老岩石樣品年齡大致從41億歲直到最古老月岩樣品的45億歲有些隕星樣品也超過了40億歲。綜合所有證據得出太陽係大約是46億歲。由於銀河係已經是150億歲左右,所以太陽及其行星年齡隻及銀河係的三分之一。雖然沒有測定太陽年齡的直接方法,但它作為赫羅圖主序上一顆橙黃色恒星的總體外貌,卻正好是對一顆具有太陽質量,年齡約為46億歲,度過了它一半主序生涯的恒星所該期望的。恒星也有自己的生命史,它們從誕生、成長到衰老,最終走向死亡。它們大小不同,色彩各異,演化的曆程也不盡相同。恒星與生命的聯係不僅表現在它提供了光和熱。實際上構成行星和生命物質的重原子就是在某些恒星生命結束時發生的爆發過程中創造出來的。目前太陽所處的主序星階段,通過對恒星演化及宇宙年代學模型的計算機模擬,已經曆了大約45.7億年。據研究,45.9億年前一團氫分子雲的迅速坍縮形成了一顆第三代第一星族的金牛T星,即太陽。這顆新生的恒星沿著距銀河係中心約27,000光年的近乎圓形軌道運行。太陽在其主序星階段已經到了中年期,在這個階段它核心內部發生的恒星核合成反應將氫聚變為氦。在太陽的核心,每秒能將超過400萬噸物質轉化為能量,生成中微子和太陽輻射。以這個速度,太陽至今已經將大約100個地球質量的物質轉化成了能量。太陽作為主序星的時間大約持續100億年左右。太陽的質量不足以爆發為超新星。在50~60億年後,太陽內的氫消耗殆盡,核心中主要是氦原子,太陽將轉變成紅巨星,當其核心的氫耗盡導致核心收縮及溫度升高時,太陽外層將會膨脹。當其核心溫度升高到100,000,000K時,將發生氦的聚變而產生碳,從而進入漸近巨星分支,而當太陽內的氦元素也全部轉化為碳後,太陽將不再發光,成為一顆死星(Blackdwarf)。地球的最終命運還不清楚。太陽變成紅巨星時,其半徑可超過1天文單位,超出地球目前的軌道,是當前太陽半徑的260倍。然而,屆時作為漸近巨星分支恒星,太陽將會由於恒星風而失去當前質量的約30%,因而行星軌道將會外推。僅就此而言,地球也許會幸免被太陽吞噬。然而,新的研究認為地球還是會因為潮汐作用的影響而被太陽吞掉。即使地球能逃脫被太陽熔融的命運,地球上的水將被蒸發而大氣層也會散逸。實際上,即使太陽還是主序星時,它也會逐步變得更亮,表麵溫度緩慢上升。太陽溫度的上升將在9億年後導致地球表麵溫度升高,造成目前我們所知的生命無法生存。其後再過10億年,地球表麵的水將完全消失。紅巨星階段之後,由熱產生的強烈脈動會拋掉太陽的外殼,形成行星狀星雲。失去外殼後剩下的隻有極為熾熱的恒星核,它將會成為白矮星,在漫長的時間中慢慢冷卻和暗淡下去。這就是中低質量恒星的典型演化過程。