楊氏模量≥2.1TPa,破壞強度≥80N/m……
單是從這給出的一係列參數來看,陸舟第一時間想到的便是一根抗拉強度非常大的纜繩,再接著想到的便是用在汽車或者航空航天設備上的抗衝擊塗料。
至於這玩意兒可以用在哪裏……
那用處可就多著了。
單說做成纜繩來用,往天上看便可以用在空間站上,作為固定散熱板和太陽能板的牽引繩,放到地麵上看可以用作工程設備的懸吊材料,下到海裏更是能夠作為航母甲板上的阻攔索。
尤其是後者,這玩意兒可不是一般的貴。
而這些僅僅隻是這種材料的用途之一。
陸舟相信等這種高楊氏模量、高破壞強度的材料問世之後,一定有無數人能夠替他想出,那些他自己都沒有想到的用途。
回到研究本身上麵。
對於係統給出的這個技術標準,陸舟能夠想到的最佳選項,便是擁有著高抗拉強度、自重輕、可塑性強的碳基材料了。
尤其是碳纖維等等一係列石墨衍生品種的增強複合材料。
這種材料不但在理論上有著廣闊的想象空間,具體到計算材料學的研究上麵,更是他的老本行了。最開始他做計算材料學研究的時候,就是從碳材料開始入手的。
因此,這個任務對他而言,可以說是一點難度都沒有。
簡直就像是白給一樣!
從王清平教授的實驗室離開之後,陸舟沒有在金陵高等研究院多做停留,而是徑直返回到了家中。
先前在對照著實驗結果修改那個數學模型的時候,他的腦海中忽然產生了一些關於計算材料學理論研究方麵的想法。
也許是因為數學和物理學雙雙升至LV10的緣故,陸舟發現自己對於數字以及物理現象的敏感,已經到達了出神入化的境界。
即便隻是一條微小到幾乎可以忽略的線索,在他的眼中也能夠被無限的放大,變成可以被雙手觸摸的鑰匙。
不管這股靈感來自於何處,他此時此刻心中的想法都隻有一個。
那便是趁著這股靈感還未消散,將它記錄下來。
上樓來到了書房,吩咐了小艾幫自己泡一杯咖啡之後,陸舟便坐在了書桌前,將從實驗室帶回來的草稿紙平鋪在了桌上。
“根據原始模型設計的實驗流程合成的材料A密度較低,在沉積之後形成了蓬鬆的團狀物質,且碳納米管的直徑極度不均勻……”
“而造成這樣結果的原因應該是單體丙烯腈經自由基聚合反應不充分,形成了大量中間產物,導致第三階段反應進行不充分……最後形成了那個泡沫狀的混合物質。”
“嘖嘖,有趣。”
讓陸舟產生興趣的倒不是那團泡沫狀的混合物,而是他在對計算模型進行修正時,發現的一些非常有意思的現象。
認真思索了一會兒之後,他拿起筆,在一張空白的草稿紙上工整地寫了一行文字。
【隱式密度泛函方法】
看著這行被提煉成文字的靈感,陸舟的嘴角不由牽起了一絲笑意。
一般而言,當一個難題被清清楚楚地寫出來,它就已經解決一半了。
至少,對於他來說是如此!
所謂隱式泛函密度,便是一種相對於顯式泛函密度的計算材料學方法,在計算材料學的理論研究領域算是一個較為熱門的研究方向。
眾所周知,傳統的交換相關能泛函是直接用電子密度函數表示的顯式泛函,而用Kohn-Shan軌道波函數作為直接變量的表示方法,便是隱式泛函。
最簡單的隱式泛函就是Fock交換能,在密度泛函理論的語境中常被稱為精確相關。
對於分子體係而言,使用隱式泛函能在相對較小的計算量下達到相當於二階多體微擾理論的精確度,因此隱式密度泛函方法被廣泛看作一種擁有著廣闊前景的計算材料學研究方法。