就能導出
∫d2ηπe2λη21ηn′-s+m-k(η*)m′-s+n-ke-|η|2
=∫d2ηπeλ2(η2+η*2)ηn′-s+m-k(η*)m′-s+n-ke-(1-λ)|η|2
=λ2n′-m′+m-n2(1-λ)n′+m-s-k+1
∑∞l=0
λ2l(n′+m-s-k+2l)![2(1-λ)]2ll!l+n′-m′+m-n2!
=A(s,k)2F1[b,c;d;λ2br(1-λ)2],(5.109)
式中:
b=12+n′+m-s-k2,′+m-s-k2,
d=1+n′-m′+m-n2,A(s,k)=λ2d-1(2b-1)!(1-λ)2bΓ(d).(5.110)
2F1(α,β;γ;z)是廣義的Hypergeometric函數(超幾何函數):
2F1(α,β;γ;z)=Γ(γ)Γ(α)Γ(β)∑∞n=0Γ(n+α)Γ(n+β)Γ(n+γ)znn!,(5.111)
要求|z|<1.
將式(5.109)代入式(5.107),得到矩陣元
H′m′n′,mn
=〈n′,m′|e-λ(X^1-X^2)2|m,n〉
=B∑min[n′,m′]s=0
∑min[n,m]k=0
[-(1-λ)]s+k(n′+m-s-k)!s!(n′-s)!(m′-s)!k!(n-k)!(m-k)!?
2F1[b,c;d;λ2br(1-λ)2],(5.112)
式中:B=(-1)m+m′m′!n′!m!n!λ2d-1(1-λ)n′+m+1Γ(d).當m=m′與n=n′時,式(5.112)就是能級的一級近似修正:
E(1)m,n=〈n,m|e-λ(X^1-X^2)2|m,n〉
=∑min[n,m]s=0
∑min[n,m]k=0
[-(1-λ)]s+km!n!(n′+m-s-k)!s!(n′-s)!(m′-s)!k!(n-k)!(m-k)!?
2F1[b′,c′;1;λ2br(1-λ)2](1-λ)m+n+1,(5.113)
式中:b′=n+m-s-k+12,+m-s-k+22以及E(1)m,n=E(1)n,m.
特別地,當取m′=m=0時,式(5.112)變為
〈n′,0|e-λ(X^1-X^2)2|0,n〉
=n′!λ2n′-n2n!(1-λ)n′+1Γ1+n′-n2?
2F1n′+12,1+n′2;1+n′-n2;λ2(1-λ)2,(5.114)
再取n=n′=0,則基態的矩陣元為
〈0,0|e-λ(X^1-X^2)2|0,0〉=11-2λ.(5.115)
就能導出
∫d2ηπe2λη21ηn′-s+m-k(η*)m′-s+n-ke-|η|2
=∫d2ηπeλ2(η2+η*2)ηn′-s+m-k(η*)m′-s+n-ke-(1-λ)|η|2
=λ2n′-m′+m-n2(1-λ)n′+m-s-k+1
∑∞l=0
λ2l(n′+m-s-k+2l)![2(1-λ)]2ll!l+n′-m′+m-n2!
=A(s,k)2F1[b,c;d;λ2br(1-λ)2],(5.109)