[109] Fan H Y, Fan Y. Normally ordered operator Fredholm equation and its applications in quantum meics [J]. un. Theor. Phys., 2000, 34(1): 149154.

[110] Rainville E D. Special funs [M]. New York: MacMillan pany, 1960.

[111] Gradshteyn I S, Ryzhik I M. Table of integrals, ries, and products [M]. New York: Academic Press, 1980.

[112] Fan H Y. New operator formulas related to Hermite polynomials derived by virtue of IWOP teique [J]. un. Theor. Phys., 2004, 42(3): 339342.

[113] Fan H Y, Yuan H C, Jiang N Q. New identities about operator Hermite polynomials and their related iion formulas [J]. Accepted by Sci. a Ser. G:Phys. Mech. Astron.

[114] Fan H Y, Fu L. Normally ordered expansion of the inver of the coordinate operator and the momentum operator [J]. J. Phys. A Math. Gen., 2003, 36: 49874992.

[115] Fan H Y, Wang T T. New operator identities and iion formulas regarding to Hermite polynomials obtained via the operator method [J]. Int. J. Theor. Phys., 2009, 48: 441448.

[116] Fan H Y, Fu L. Normally ordered expansion of the inver of the coordinate operator and the momentum operator [J]. J. Phys. A: Math. Gen., 2003, 36: 49874992.

[109] Fan H Y, Fan Y. Normally ordered operator Fredholm equation and its applications in quantum meics [J]. un. Theor. Phys., 2000, 34(1): 149154.

[110] Rainville E D. Special funs [M]. New York: MacMillan pany, 1960.

[111] Gradshteyn I S, Ryzhik I M. Table of integrals, ries, and products [M]. New York: Academic Press, 1980.

[112] Fan H Y. New operator formulas related to Hermite polynomials derived by virtue of IWOP teique [J]. un. Theor. Phys., 2004, 42(3): 339342.

[113] Fan H Y, Yuan H C, Jiang N Q. New identities about operator Hermite polynomials and their related iion formulas [J]. Accepted by Sci. a Ser. G:Phys. Mech. Astron.

[114] Fan H Y, Fu L. Normally ordered expansion of the inver of the coordinate operator and the momentum operator [J]. J. Phys. A Math. Gen., 2003, 36: 49874992.

[115] Fan H Y, Wang T T. New operator identities and iion formulas regarding to Hermite polynomials obtained via the operator method [J]. Int. J. Theor. Phys., 2009, 48: 441448.

[116] Fan H Y, Fu L. Normally ordered expansion of the inver of the coordinate operator and the momentum operator [J]. J. Phys. A: Math. Gen., 2003, 36: 49874992.

[117] Li H M, Yuan H C. Simple approach to deriving some operator formulas in quantum optics [J]. Int. J. Theor. Phys., 2010, 49: 21212130.