第四十八章講座(1 / 2)

第四十八章講座

9月21日,晴空萬裏,陽光明媚。

大一新生開始上課了,他們在這第一學期需要上力學、高數、線代、計算概論、大學語文、軍事理論、思修、大學英語、體育這九門必修課。

軍事理論,在軍訓的時候,已經完成了,也就是說第一學期還剩下九門課。

除此之外,還有幾門選修的,不過選修課還沒正式開始。

秦元清他們幾個班一起上力學課,原本秦元清抱著很大的期待,覺得教導力學課的是一位教授,應該講課講得不錯。結果聽了二十幾分鍾,秦元清就想對著教授說,擺脫,教授,我們不是高中生,您可以講得再深一點。

秦元清很失望,就這。。。。。。還不如自己自學呢!

幾個課程各上一節課後,秦元清便開始懶得聽課了,每次上課的時候秦元清就坐在最後麵座位上,自己看書。

轉眼過去四天,秦元清在圖書館一側的公告欄的位置刊登了一條講座信息:“明日9:00在XX階梯教室舉行題為‘孿生素數猜想’的學術講座。。。。。。”

看到孿生素數猜想這幾個字,秦元清頓時來了興趣,這幾天他在全力攻克孿生素數猜想最後的關卡,沒想到現在有數學家要來學校舉行‘孿生素數猜想’的學術講座。

有意思!

秦元清露出感興趣之色,剛好明天早上沒課,可以去聽聽,看看對方在‘孿生素數猜想’上研究水平。

孿生素數猜想是數論中的著名未解決猜想,這個猜想正式由希爾伯特在1900年國際數學家大會的報告上第8個問題中提出,可以被描述為“存在無窮個孿生素數”。

孿生素數即相差2的一對素數。例如3和5,5和7,11和13,…,10016957和10016959等等都是孿生素數。

素數定理說明了素數在趨於無窮大時變得稀少的趨勢。而孿生素數,與素數一樣,也有相同的趨勢,並且這種趨勢比素數更為明顯。因此,孿生素數猜想是反直覺的。

關於孿生素數,這百年時間最主要的成果有兩個,一個是1920年,挪威的維果·布朗通過使用著名的篩理論,證明了2能表示成兩個最多有9個素數因子的數的差,這個結論已經有些近似於孿生素數猜想了。隻要將這個證明中的“最多有9個素數因子的數”改進到“最多有1個素數因子的數”就可以證明孿生素數猜想。

第二個主要成果,就是1966年由我國數學家陳景潤利用篩法所取得的,其證明了:存在無窮多個素數p,使得p+2要麼是素數,要麼是兩個素數的乘積。這個結果與他關於哥德巴赫猜想的結果很類似。

至於後麵四十年的成果,都未曾脫離這兩個成果。

“張翼唐麼?”看著講座主講人的名字,秦元清暗自嘀咕著,再查了一下,發現這個人竟然頗為不得了,1978年-1982年就在燕大數學係獲得學士學位,1982-1985年師從著名數學家、燕大潘承彪教授攻讀碩士學位,1992年畢業於美利堅普渡大學,獲博士學位,現任教於美利堅新罕布什爾大學數學係。

此人的研究方向就在於數論上。

秦元清繼續攻克著《孿生素數猜想》,他有種感覺,距離完全證明《孿生素數猜想》不遠了,再加把油就可以實現。

上午八點半,階梯教室裏位置已經快坐滿了。

秦元清在最後一排找了個位置坐下,然後埋頭看書,他看的是一本專業數學書,是從圖書館借來的。

到了八點五十分,階梯教室裏座無虛席,甚至連走道都已經坐了很多人。

聽著有人為了聽講位置爭吵,秦元清才知道,來這裏聽講座的不僅僅隻有水木大學本校的學生,還有燕大等高校的學生前來聽課。

水木的學生自己在自家地盤聽講座,偏偏沒位置,這多麼讓人惱怒,自然想要趕走其他學校的學生,可那些學校的學生也不是善茬,憑什麼他們就不能來聽講座,你們學校也沒有禁止啊。

學校都不管,你算老幾。

9:00準時整,整個階梯教室都安靜下來了,一個戴著眼鏡的中年男人來到講台,打開了筆記本電腦,電腦連接著屏幕,而主持人則是介紹著中年男人的身份、地位。

聽講座的人都安靜地注意聽,翻開自己筆記本,開始做筆記。

“……我們都知道,素數是隻含有兩個因子的自然數,你們可能上初中的時候就背過前一百位的素數表。而孿生素數,是指差值為2的素數對,即p和p+2同為素數對。例如3和5、5和7、11和13、17和19等。隨著數的變大,可以觀察到的孿生素數對越來越少。”