根據“可控熱核聚變”原理研發的“人造太陽”將帶來人類能源供應格局的根本性變革。一旦這一成果投入商業運行,將徹底變革世界能源供應格局。
中科院等離子體物理研究所於1994年底在合肥建成中國第一個超導托卡馬克HT-7裝置,在該裝置的基礎上,研究所研製了“EAST”實驗裝置,被稱為世界上第一個全超導核聚變“人造太陽”實驗裝置。
2005年4月27日,EAST總裝完成了難度最大的工作——三環套裝。三環從裏到外的順序為真空室、內冷屏和縱場磁體,是整個裝置的內三層。
2006年1月10日,EAST裝置外杜瓦安裝成功,這標誌著EAST總裝第一階段的全麵竣工,為EAST降溫通電實驗創造了良好的條件。
外真空杜瓦是EAST裝置最外層的結構部件。它主要為真空室等內部部件提供真空工作環境,隔絕內部部件與環境的自由熱交換,以實現對運行溫度的控製,從而滿足總體設計要求。在太陽上由於引力巨大,氫的聚變可以自然地發生,但在地球上的自然條件下卻無法實現自發的持續核聚變。在氫彈中,爆發是在瞬間發生並完成的,可以用一個原子彈提供高溫和高壓,引發核聚變,但在反應堆裏,不宜采用這種方式,否則反應會難以控製。
根據核聚變發生的機理,要實現可控製的核聚變實際上比造個太陽要難多了。我們知道,所有原子核都帶正電,兩個原子核要聚到一起,必須克服靜電斥力。兩個核之間靠得越近,靜電產生的斥力就越大,隻有當它們之間互相接近的距離達到大約萬億分之三毫米時,核力(強作用力)才會伸出強有力的手,把它們拉到一起,從而放出巨大的能量。要使它們聯起手來並不難,難的是既要讓它們有拉手的機會又不能讓他們過於頻繁地拉手。要使它們有機會拉手,就要使粒子間有足夠的高速碰撞的機會,這可以增加原子核的密度和運動速度。但增加原子核的密度是有限製的,否則一旦反應加速,自身放出的能量會使反應瞬間爆發。據計算,在維持一定的密度下,粒子的溫度要達到1億至2億℃才行,這要比太陽上的溫度(中心溫度1500萬℃,表麵也有6000℃)還要高許多。但這樣高的溫度拿什麼容器來裝它們呢?
這個問題並沒有難倒科學家,20世紀50年代初,前蘇聯科學家塔姆和薩哈羅夫提出磁約束的概念。前蘇聯庫爾恰托夫原子能研究所的阿奇莫維奇按照這樣的思路,不斷進行研究和改進,於1954年建成了第一個磁約束裝置。他將這一形如麵包圈的環形容器命名為托卡馬克(tokamak)。托卡馬克是“磁線圈圓環室”的俄文縮寫,又稱環流器。這是一個由封閉磁場組成的“容器”,像一個中空的麵包圈,可用來約束電離了的等離子體。我們知道,一般物質到達10萬℃時,原子中的電子就脫離了原子核的束縛,形成等離子體。等離子體是由帶正電的原子核和帶負電的電子組成的氣體,整體是電中性的。在磁場中,它們的每個粒子都是顯電性的,帶電粒子會沿磁感線做螺旋式運動,所以等離子體就這樣被約束在這種環形的磁場中。這種環形的磁場又叫磁瓶或磁籠,看不見,摸不著,也不接觸有形的物體,因而也就不怕什麼高溫了,它可以把炙熱的等離子體托舉在空中。人們本來設想,有了“麵包爐”,隻需把氘、氚放入爐內加火烤製,把握好火候,能量就應該流出來。其實不然,人們接著遇到的麻煩是,在加熱等離子體的過程中能量耗散嚴重,溫度越高,耗散越大。一方麵,高溫下粒子的碰撞使等離子體的粒子會一步一步地橫越磁感線,攜帶能量逃逸;另一方麵,高溫下的電磁輻射也要帶走能量。這樣,要想把氘、氚等離子體加熱到所需的溫度,不是件容易的事。另外,磁場和等離子體之間的邊界會逐漸模糊,等離子體會從磁籠裏鑽出去,而且當約束等離子體的磁場一旦出現變形,就會變得極不穩定,造成磁籠斷開或等離子體碰到聚變反應室的內壁上。步步逼近托卡馬克中等離子體的束縛是靠縱場(環向場)線圈,產生環向磁場,約束等離子體,極向場控製等離子體的位置和形狀,中心螺管也產生垂直場,形成環向高電壓,激發等離子體,同時加熱等離子體,也起到控製等離子體的作用。
幾十年來,人們一直在研究和改進磁場的形態和性質,以達到長時間的等離子體的穩定約束;還要解決等離子體的加熱方法和手段,以達到聚變所要求的溫度;在此基礎上,還要解決維持運轉所耗費的能量大於輸出能量的問題。每一次等離子體放電時間的延長,人們都為之興奮;每一次溫度的提高,人們都為之歡呼;每一次輸出能量的提高,都意味著我們離聚變能的應用更近了一步。盡管取得了很大進步,但障礙還是沒有被克服。到目前為止,托卡馬克裝置都是脈衝式的,等離子體約束時間很短,大多以毫秒計算,個別可達到分鍾級,還沒有一台托卡馬克裝置實現長時間的穩態運行,而且在能量輸出上也沒有做到不賠本運轉。
為了維持強大的約束磁場,電流的強度非常大,時間長了,線圈就要發熱。從這個角度來說,常規托卡馬克裝置不可能長時間運轉。為了解決這個問題,人們把最新的超導技術引入到托卡馬克裝置中,也許這是解決托卡馬克穩態運轉的有效手段之一。目前,法國、英國、俄羅斯和中國共有4個超導的托卡馬克裝置在運行,它們都隻有縱向場線圈采用超導技術,屬於部分超導。其中法國的超導托卡馬克Tore-Supra體積較大,它是世界上第一個真正實現高參數準穩態運行的裝置,在放電時間長達120秒的條件下,等離子體溫度為2000萬℃。中國和韓國建造的全超導托卡馬克裝置,目標是實現托卡馬克更長時間的穩態運行。