第四章 學生科技發明啟迪1
1.紅外線的發現
黑暗的地方怎麼會比明亮的地方“熱”呢?這得從兩個世紀前說起。
在19世紀1800年以前,人們都知道太陽的“白”光可以通過三棱鏡被分解為紅、橙、黃、綠、藍、靛、紫七色光。這最早由大名鼎鼎的年頓在1666年實驗成功。100多年過去,人們再也沒有想過,太陽光除這七色光外還有,或沒有什麼了。
可是,出生在德國的英國物理學、天文學家赫謝耳(1738~1822)卻突發奇想,在這七種可見光的“外”麵,即看不見的區域,還有什麼“東西”呢?於是他在1800年做了下麵的實驗。
他讓陽光通過三棱鏡後折射到後麵的白色紙屏上,當然也和牛頓一樣,得到了七色彩帶,所不同的是,這次他還將9支完全相同的溫度計在每種色區內放1支,最後兩支則分別放在紅光以“外”和紫光以“外”附近區域。在陽光折射的七彩光照射下,七個可見光區內的溫度計溫度都升高了,例如紅、綠、紫光區各升高5℃、3℃和2℃;但紫光外區域的溫度卻未升高。他同時還發現,紅光外區域溫度不但升高了,而且比紅光區升得還高,升高達到7℃!這使他大吃一驚——那裏並沒有光線照射啊!
那是不是離紅光區更遠的區域溫度會升得更高呢?於是他又將溫度計移到離紅光區更遠的區域,但這時溫度卻不再增加,反而降到室溫。經過反複實驗研究,他終於判定,紅光外附近區域存在“紅外線”或“紅外輻射”。他還用實驗證明,紅外線不管來自地球、太陽或其他何處,都和可見光一樣遵守著折射、反射定律。但比可見光更容易被空氣吸收。由於它“不可見”,因此在剛發現時被稱為“不可見輻射”。
紅外線按波長不同還可分為近(波長075~3微米)、中(波長3~30微米)、遠(波長30~1000微米)三種。任何物體在任何溫度下都要不停地向外輻射紅外線。
一般來說,物體溫度越高,輻射紅外線的能力就越強,物體在單位表麵積輻射紅外線能量的總功率與它自身熱力學溫度的4次方成正比。利用這一規律可製成紅外測溫儀器。當一些氣體分子的運動頻率與紅外線的頻率相當時,這些氣體——例如空氣中的二氧化碳、水汽,便會把紅外線的能量吸收掉。因而,來自太陽的某些紅外線便會被這些氣體吸收;而未被氣體吸收透過大氣的紅外線波段便稱為“大氣紅外窗”或“紅外大氣窗”。在大氣吸收紅外線這一原理的啟發下,人們得到了紅外線應用的又一成果——紅外氣體分析。用這一技術可測出空氣中的一氧化碳、二氧化碳、氧化亞氮、甲烷、乙烯等氣體。這在工業、農業、環境監測、醫學檢驗和其他科研中都有重要作用。紅外線還有熱效應強、易透過雲霧煙塵的特點。所以加熱、烘幹、遙測、遙感、金屬探傷、熱像儀診病、導彈、夜視、尋找地熱和水源、監視森林火情、估計農作物長勢和收成、氣象預報、“紅外顯微鏡”(用於測量溫度)等都是它的應用實例。除太陽外,宇宙中許多天體都輻射出大量的紅外線,科學家們把“紅外望遠鏡”發射到外層空間,避免了大氣對紅外線的吸收,更能準確地探測到這些天體發出的紅外線。
赫謝耳發現紅外線後,引起了人們進一步的思考:為什麼紫光以外區域溫度計的示值不升高呢?是不是這裏沒有不可見光呢?如果有,又是什麼呢?又能用什麼方法探測呢?
德國物理學家裏特爾(1776或1778~1810)是其中別具慧眼的一個。他意識到,用物理方法不能探測紫光外區域的情況,那就用化學方法。1810年,他將一張浸有氯化銀溶液的紙片,放在前述七色彩帶紫光區域以外附近的區域,經過一段時間後,發現紙片上的物質明顯地變黑了。他研究後指出,這是由於紙片受到一種看不見的射線照射的結果。並把它稱為“去氧射線”,即現在人所共知的“紫外線”。他還正確地確認了各種輻射對氯化銀分解作用的大小實際上就是能量的大小,從而判斷出紫外線的能量比紫光的能量要大。