線性代數方法是指使用線性觀點看待問題,並用線性代數的語言描述它、解決它(必要時可使用矩陣運算)的方法。這是數學與工程學中最主要的應用之一。
拓撲學
幾何拓撲學是十九世紀形成的一門數學分支,它屬於幾何學的範疇。有關拓撲學的一些內容早在十八世紀就出現了。那時候發現一些孤立的問題,後來在拓撲學的形成中占著重要的地位。
在數學上,關於哥尼斯堡七橋問題、多麵體的歐拉定理、四色問題等都是拓撲學發展史的重要問題。
哥尼斯堡(今俄羅斯加裏寧格勒)是東普魯士的首都,普萊格爾河橫貫其中。十八世紀在這條河上建有七座橋,將河中間的兩個島和河岸聯結起來。人們閑暇時經常在這上邊散步,一天有人提出:能不能每座橋都隻走一遍,最後又回到原來的位置。這個問題看起來很簡單又很有趣的問題吸引了大家,很多人在嚐試各種各樣的走法,但誰也沒有做到。看來要得到一個明確、理想的答案還不那麼容易。
1736年,有人帶著這個問題找到了當時的大數學家歐拉,歐拉經過一番思考,很快就用一種獨特的方法給出了解答。歐拉把這個問題首先簡化,他把兩座小島和河的兩岸分別看作四個點,而把七座橋看作這四個點之間的連線。那麼這個問題就簡化成,能不能用一筆就把這個圖形畫出來。經過進一步的分析,歐拉得出結論——不可能每座橋都走一遍,最後回到原來的位置。並且給出了所有能夠一筆畫出來的圖形所應具有的條件。這是拓撲學的“先聲”。
在拓撲學的發展曆史中,還有一個著名而且重要的關於多麵體的定理也和歐拉有關。這個定理內容是:如果一個凸多麵體的頂點數是v、棱數是e、麵數是f,那麼它們總有這樣的關係:f+v-e=2。
根據多麵體的歐拉定理,可以得出這樣一個有趣的事實:隻存在五種正多麵體。它們是正四麵體、正六麵體、正八麵體、正十二麵體、正二十麵體。
著名的“四色問題”也是與拓撲學發展有關的問題。四色問題又稱四色猜想,是世界近代三大數學難題之一。
四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯·格思裏來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:“看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。”
1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理。但後來數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。
進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億次判斷,終於完成了四色定理的證明。不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書麵證明方法。
上麵的幾個例子所講的都是一些和幾何圖形有關的問題,但這些問題又與傳統的幾何學不同,而是一些新的幾何概念。這些就是“拓撲學”的先聲。
微積分
微積分(Calculus)是研究函數的微分、積分以及有關概念和應用的數學分支。
它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算麵積、體積等提供一套通用的方法。
微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們可以以兩者中任意一者為起點來討論微積分學,但是在教學中,微分學一般會先被引入。
微積分學是微分學和積分學的總稱。它是一種數學思想,“無限細分”就是微分,“無限求和”就是積分。無限就是極限,極限的思想是微積分的基礎,它是用一種運動的思想看待問題。比如,子彈飛出槍膛的瞬間速度就是微分的概念,子彈每個瞬間所飛行的路程之和就是積分的概念。如果將整個數學比作一棵大樹,那麼初等數學是樹的根,名目繁多的數學分支是樹枝,而樹幹的主要部分就是微積分。微積分堪稱是人類智慧最偉大的成就之一。
極限和微積分的概念可以追溯到古代。到了十七世紀後半葉,牛頓和萊布尼茨完成了許多數學家都參加過準備的工作,分別獨立地建立了微積分學。他們建立微積分的出發點是直觀的無窮小量,理論基礎是不牢固的。直到十九世紀,柯西和維爾斯特拉斯建立了極限理論,康托爾等建立了嚴格的實數理論,這門學科才得以嚴密化。
萊布尼茨
微積分是與實際應用聯係著發展起來的,它在天文學、力學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學等多個分支中,有越來越廣泛的應用。特別是計算機的發明更有助於這些應用的不斷發展。
客觀世界的一切事物,小至粒子,大至宇宙,始終都在運動和變化著。因此在數學中引入了變量的概念後,就有可能把運動現象用數學來加以描述了。
由於函數概念的產生和運用的加深,也由於科學技術發展的需要,一門新的數學分支就繼解析幾何之後產生了,這就是微積分學。微積分學這門學科在數學發展中的地位是十分重要的,可以說它是繼歐氏幾何後,全部數學中的最大的一個創造。