正文 第3節 新生的學科(2 / 3)

光學

量子光學。1900年普朗克在研究黑體輻射時,為了從理論上推導出得到的與實際相符甚好的經驗公式,他大膽地提出了與經典概念迥然不同的假設,即“組成黑體的振子的能量不能連續變化,隻能取一份份的分立值”。

1905年,愛因斯坦在研究光電效應時推廣了普朗克的上述量子論,進而提出了光子的概念。他認為光能並不像電磁波理論所描述的那樣分布在波陣麵上,而是集中在所謂光子的微粒上。在光電效應中,當光子照射到金屬表麵時,一次為金屬中的電子全部吸收,而無需電磁理論所預計的那種累積能量的時間,電子把這能量的一部分用於克服金屬表麵對它的吸力即作逸出功,餘下的就變成電子離開金屬表麵後的動能。

這種從光子的性質出發,來研究光與物質相互作用的學科即為量子光學。它的基礎主要是量子力學和量子電動力學。

光的這種既表現出波動性又具有粒子性的現象既為光的波粒二象性。後來的研究從理論和實驗上無可爭辯地證明了:非但光有這種兩重性,世界的所有物質,包括電子、質子、中子和原子以及所有的宏觀事物,也都有與其本身質量和速度相聯係的波動的特性。

應用光學光學是由許多與物理學緊密聯係的分支學科組成;由於它有廣泛的應用,所以還有一係列應用背景較強的分支學科也屬於光學範圍。例如,有關電磁輻射的物理量的測量的光度學、輻射度學;以正常平均人眼為接收器,來研究電磁輻射所引起的彩色視覺,及其心理物理量的測量的色度學;以及眾多的技術光學:光學係統設計及光學儀器理論,光學製造和光學測試,幹涉量度學、薄膜光學、纖維光學和集成光學等;還有與其他學科交叉的分支,如天文光學、海洋光學、遙感光學、大氣光學、生理光學及兵器光學等。

聲學

聲學是研究媒質中聲波的產生、傳播、接收、性質及其與其他物質相互作用的科學。

聲學是經典物理學中曆史最悠久而當前仍在前沿的一個分支學科。因而它既古老而又頗具年輕活力。

聲學是物理學中很早就得到發展的學科。聲音是自然界中非常普遍、直觀的現象,它很早就被人們所認識,無論是中國還是古代希臘,對聲音、特別是在音律方麵都有相當的研究。我國在3400多年以前的商代對樂器的製造和樂律學就已有豐富的知識,以後在聲音的產生、傳播、樂器製造、樂律學以及建築和生產技術中聲學效應的應用等方麵,都有許多豐富的經驗總結和卓越的發現和發明。國外對聲的研究亦開始得很早,早在公元前500年,畢達哥拉斯就研究了音階與和聲問題,而對聲學的係統研究則始於17世紀初伽利略對單擺周期和物體振動的研究。17世紀牛頓力學形成,把聲學現象和機械運動統一起來,促進了聲學的發展。聲學的基本理論早在19世紀中葉就已相當完善,當時許多優秀的數學家、物理學家都對它作出過卓越的貢獻。1877年英國物理學家瑞利發表巨著《聲學原理》集其大成,使聲學成為物理學中一門嚴謹的相對獨立的分支學科,並由此拉開了現代聲學的序幕。

聲學又是當前物理學中最活躍的學科之一。聲學日益密切地同聲多種領域的現代科學技術緊密聯係,形成眾多的相對獨立的分支學科,從最早形成的建築聲學、電聲學直到目前仍在“定型”的“分子—量子聲學”、“等離子體聲學”和“地聲學”等等,目前已超過20個,並且還有新的分支在不斷產生。其中不僅涉及包括生命科學在內的幾乎所有主要的基礎自然科學,還在相當程度上涉及若幹人文科學。這種廣泛性在物理學的其它學科中,甚至在整個自然科學中也是不多見的。

在發展初期,聲學原是為聽覺服務的。理論上,聲學研究聲的產生、傳播和接收;應用上,聲學研究如何獲得悅耳的音響效果,如何避免妨礙健康和影響工作的噪聲,如何提高樂器和電聲儀器的音質等等。隨著科學技術的發展,人們發現聲波的很多特性和作用,有的對聽覺有影響,有的雖然對聽覺並無影響,但對科學研究和生產技術卻很重要,例如,利用聲的傳播特性來研究媒質的微觀結構,利用聲的作用來促進化學反應等等。因此,在近代聲學中,一方麵為聽覺服務的研究和應用得到了進一步的發展,另一方麵也開展了許多有關物理、化學、工程技術方麵的研究和應用。聲的概念不再局限在聽覺範圍以內,聲振動和聲波有更廣泛的含義,幾乎就是機械振動和機械波的同義詞了。

自然界從宏觀世界到微觀世界,從簡單的機械運動到複雜的生命運動,從工程技術到醫學、生物學,從衣食住行到語言、音樂、藝術,都是現代聲學研究和應用的領域。

聲學的分支可以歸納為如下幾個方麵:

從頻率上看,最早被人認識的自然是人耳能聽到的“可聽聲”,即頻率在20Hz~20000Hz的聲波,它們涉及語言、音樂、房間音質、噪聲等,分別對應於語言聲學、音樂聲學、房間聲學以及噪聲控製;另外還涉及人的聽覺和生物發聲,對應有生理聲學、心理聲學和生物聲學;還有人耳聽不到的聲音,一是頻率高於可聽聲上限的,即頻率超過20000Hz的聲音,有“超聲學”,頻率超過500MHz的超聲稱為“特超聲”,當它的波長約為10〈-8〉m量級時,已可與分子的大小相比擬,因而對應的“特超聲學”也稱為“微波聲學”或“分子聲學”。超聲的頻率還可以高10〈14〉Hz。二是頻率低於可聽聲下限的,即是頻率低於20Hz的聲音,對應有“次聲學”,隨著次聲頻率的繼續下降,次聲波將從一般聲波變為“聲重力波”,這時必須考慮重力場的作用;頻率繼續下降以至變為“內重力波”,這時的波將完全由重力支配。次聲的頻率還可以低至10-4Hz。需要說明的是,從聲波的特性和作用來看,所謂20Hz和20000Hz並不是明確的分界線。例如頻率較高的可聽聲波,已具有超聲波的某些特性和作用,因此在超聲技術的研究領域內,也常包括高頻可聽聲波的特性和作用的研究。