空天飛機
空天飛機是既能航空又能航天的新型飛行器。它像普通飛機一樣起飛,以高超音速在大氣層內飛行,在30~100公裏高空的飛行速度為12~25倍音速,並直接加速進入地球軌道,成為航天飛行器,返回大氣層後,像飛機一樣在機場著陸,成為自由地往返天地之間的運輸工具。
在此之前,航空和航天是兩個不同的技術領域,由飛機和航天飛行器分別在大氣層內、外活動,航空運輸係統是重複使用的,航天運載係統一般是不能重複使用的。而空天飛機能夠達到完全重複使用和大幅度降低航天運輸費用的目的。
曆史探索
20世紀60年代初,就有人對空天飛機作過一些探索性試驗,當時它被稱為“跨大氣層飛行器”。由於當時的技術、經濟條件相差太遠,且應用需求不明確,因而中途夭折;
20世紀80年代中期,在美國的“阿爾法”號永久性空間站計劃的刺激下,一些國家對發展載人航天事業的熱情普遍高漲,積極參加“阿爾法”號空間站的建造。據估計,空間站建成後,為了開發和利用太空資源。向空間站運送人員、物資和器材等任務每年將達到數千次之多。這些任務如果用一次性運載火箭、載人飛船或航天飛機來完成,那麼一年的運輸費用將達到上百億美元。為了尋求一種經濟的天地往返運或係統,美、英、德、法、日等國紛紛推出了可重複使用的天地往返運輸係統方案。
1986年,美國提出研製代號為X-30的完全重複使用的單級水平起陣的“國家航空航天飛機”,其特點是采用組合式超音速燃燒衝壓噴氣發動機。英國提出了一種名叫“霍托爾”(或譯“霍托克”,意為“水平起落航空航天飛機”)的單級水平起降空天飛機,其特點是采用一種全新的空氣液化循環發動機。
20世紀90年代,他們又提出了一個技術風險小,開發費用低的新方案。德國則提出兩級水平起降空天飛機“桑格爾”,第一級實際上相當於一架超音速運輸機,第二級是以火箭發動機為動力的有翼飛行器。兩級都能分別水平著陸。法國和日本也提出過自己的空天飛機設想。80年代末,這股空天飛機熱達到高潮。也激起了中國航空航天專家的很大興趣。
美國空軍的X-37B空天飛機原型機“軌道試驗飛行器1號”將於2010年4月上演處女航。
美國東部時間22日19時52分(北京時間23日7時52分),人類首架空天飛機X-37B搭乘“阿特拉斯-5”型運載火箭發射升空。按計劃,X-37B最多可在太空持續飛行270天。
關鍵技術
發展空天飛機的主要目的是想降低空天之間的運輸費用。其途徑歸納起來主要有三條:一是充分利用大氣層中的氧,以減少飛行器攜帶的氧化劑,從麵減輕起飛重量;二是整個飛行器全部重複使用,除消耗推進劑外不拋棄任何部件;三是水平起飛,水平降落,簡化起飛(發射)和降落(返回)所需的場地設施和操作程序,減少維修費用。
但是,經過幾年的研究分析,科學家們發規,過去的估計過於樂觀。實際上。上述三條途徑知易而行難。需要解決的關鍵技術難度決非短時間內能突破,這些關鍵技術有:
新構思的吸氣式發動機
因為,空天飛機的飛行範圍為從大氣層內到大氣層外,速度從0到M=25,如此大的跨度和工作環境變化是目前現有的所有單一類型的發動機都不可能勝任的,從而也就使為空天飛機研製全新的發動機成為整個項目的關鍵。
眾所周知,噴氣式發動機需要在大氣層中吸入空氣,無需攜帶氧化劑,但無法在大氣層外工作,且實用速度較小;而火箭發動機自帶氧化劑,可以工作在大氣層內外,使用速度範圍較廣,但攜帶的氧化劑較笨重,比衝小。
目前設想的空天飛機的動力一般為采用超音速燃燒衝壓發動機+火箭發動機或渦輪噴氣+衝壓噴氣+火箭發動機的組合動力方式。但超燃衝壓發動機的研製上存在相當多的技術問題,而多種發動機的組合方式又使結構變得過於複雜和不可靠。
計算空氣動力學分析
航天飛機返回再入大氣層的空氣動力學問題,曾經耗費了科學家們多年的心血,作了約10萬小時的風洞試驗。空天飛機的空氣動力學問題比航天飛機複雜得多。因為飛機速度變化大,馬赫數從0變化到25;飛行高度變化大,從地麵到幾百公裏高的外層空間;返回再入大氣層時下行時間長,航天飛機隻有十幾分鍾,空天飛機則為l~2小時。
解決空氣動力學問題的基本手段是風洞。目前,就連美國也不具備馬赫數可以跨越這樣大範圍的試驗風洞。即使有了風洞還需要作上百萬小時的試驗,那意味著就是晝夜不停地試驗,也需要花費100多年的時間。於是,隻能求助於計算機,用計算方法來解決,而對那維爾斯托克斯方程的求解目前尚存在許多理論上和計算速度上的問題。
發動機和機身一體化設計
空天飛機裏安裝了空氣渦輪發動機、衝壓發動機和火箭發動機三類發動機。空氣渦輪噴氣發動機可以使空天飛機水平起飛。當時速超過2400公裏時,就使用衝壓發動機,它使空天飛機在離地麵60公裏的大氣層內以每小時近3萬公裏的速度飛行。如果再用火箭發動機加速,空天飛機就衝出大氣層,像航天飛機一樣,直接進入太空。
當空天飛機以6倍於音速以上的速度在大氣層中飛行時,空氣阻力將急劇上升,所以其外形必須高度流線化。亞音速飛機常采用的翼吊式發動機已不能使用需要將發動機與機身合並,以構成高度流線化的整體外形。即讓前機身容納發動機吸人空氣的進氣道,讓後機身容納發動機排氣的噴管。這就叫做“發動機與機身一體化”。
在一體化設計中,最複雜的是要使進氣道與排氣噴管的幾何形狀,能隨飛行速度的變化而變化,以便調節進氣量,使發動機在低速時能產生額定推力,而在高速時又可降低耗油量,還要保證進氣道有足夠的剛度和耐高溫性能,以使它在返回再入大氣層的過程中,能經受住高速氣流和氣動力熱的作用,這樣才不致發生明顯變形,才可多次重複使用。
防熱結構與材料
空天飛機需要多次出人大氣層,每次都會由於與空氣的劇烈摩擦而產生大量氣動加熱,特別是以高超音速返回再入大氣層時,氣動加熱會使其表麵達到極高的溫度。機頭處溫度約為1800℃,機翼和尾翼前緣溫度約為1460℃,機身下表麵約為980℃,上表麵約為760℃。因此,必須有一個重量輕、性能好、能重複使用的防熱係統。