世界核電工業之所以發展迅速,主要因為它具有較強的經濟競爭力、環境汙染較小、燃料豐富三個優點。在權衡利弊時,從現代的觀點來看,無論如何,利還是大於弊。
目前,人類對核燃料即鈾資源的勘探工作還十分有限。但是根據已經發現的天然鈾礦,如果用於核發電,足可以使用幾千年。
1986年的另一項重要科技成就是,日本金屬礦業團在瀨戶內海的秀川縣成功地建造了世界上第一座用海水提鈾的工廠,這座於4月下旬投產的提鈾廠年產10噸鈾。海水提鈾的工業化,為人類開發海水中數十億噸鈾儲量邁出了可貴的第一步。
如果將這項儲量考慮在內,那麼,廣闊的海洋幾乎成為核燃料取之不盡的寶藏。
1686年,是核工業有沉痛教訓的一年,也是獲得很大成就的一年。
自核電站問世以來,由於工程技術的不斷改善使核電站的運行性能不斷提高,運行的安全可靠性日趨完善,事故發生率也在下降。這就使得核電站的時間利用率和負荷明顯提高,進一步顯示了核電站的經濟效益和它在各類發電係統中的競爭能力。
誠然,核電技術的先進性和可靠性是確保安全的重要因素,但實行嚴格的科學管理同樣也是確保安全的重要因素,這是人們從這場切爾諾貝利核事故中應該吸取的嚴重教訓。
安全設備的日趨複雜化,促使我們必須把希望寄托在一係列複雜設備運行的安全無誤上。那麼能不能建造出包含內在安全因素的核反應堆呢?回答應該是肯定的。
瑞典研製成功的“內在過程絕對安全”反應堆就是具有代表性的新型反應堆。它的設計思想是:即使初級冷卻係統失靈,堆芯仍能冷卻下來。內在安全能保證不用複雜的安全設備,反應堆仍然能安全運轉。
核電站的充分安全問題並非是不能解決的。
不可否認,切爾諾貝利事故對核電發展帶來某些消極作用。然而,這並不能否定核電的優點。回顧核電的發展史,尤其是從世界性能源發展的長遠觀點看,核電站的發展前景是美好的。隨著工程技術和管理水平的不斷改善,必將給核電工業帶來新的生機。
我們不妨再就日本的情況來說,這個國家非但沒有停止發展核電,而且還著手製定了麵向21世紀的核電長期戰略計劃,並以每年投產兩座核反應堆的速度增建新的核電站。原因就在於日本已擁有一整套安全防護對策。
日本的安全對策是在“沒有安全也就沒有原子能利用”的前提下,從原子能發電設備的多重保護設計、國家製定嚴格的發展原子能發電的安全規則、原子能發電企業采取萬全的運營措施、提高操作人員的素質、減少人為的失誤、加強地方居民對核電站安全運轉的監督和關注為內容,構成一套完整的安全防護體係。
日本在技術上把核反應堆運轉過程中在堆內產生和積存的放射性物質全部密封起來,以免有害氣體外泄。即使在運轉過程中發生事故,也能把放射性物質封閉起來而不影響周圍居民的安全。
他們實施多重防護主要包括:
(1)防止發生異常的對策:要求核發電係統在設計上必須留有足夠的安全係數,選用的設備和材料必須保證質量,對施工質量也要有嚴格的要求和驗收,發電係統中還配有在部分機器出現異常時能自動確保安全的“安全係統”,和一旦出現操作失誤能確保整個係統安全的“連鎖裝置係統”。對投入運轉後的核反應堆和渦輪機實施嚴格的定期檢查。
(2)防止異常事故擴大對策:主要是在設計上配有一套能夠自動檢測,早期發現多種異常並使核反應堆緊急停止,自動消除餘熱的係統。
(3)防止放射性物質泄出的對策:配有一套出現異常時使用的反應堆堆芯冷卻裝置,它由高壓注人裝置、低壓注入裝置、反應堆堆芯噴霧器等係統構成。