中微子模型
中微子是組成自然界的最基本的粒子之一,常用符號ν表示。中微子不帶電,自旋為1/2,質量非常輕(小於電子的百萬分之一),以接近光速運動。中微子個頭小,可自由穿過地球,幾乎不與任何物質發生作用,號稱宇宙間的“隱身人”。科學家觀測它頗費周折,從預言它的存在到發現它,用了十多年的時間。雖然中微子非常小,但是其研究價值卻非常巨大。要說中微子,就不得不提它的“老大哥”——原子基本組成之一的中子。中子在衰變成質子和電子(β衰變)時,能量會出現虧損。物理學上著名的哥本哈根學派鼻祖尼爾斯·玻爾據此認為,β衰變過程中能量守恒定律失效。1931年春,國際核物理會議在羅馬召開,當時世界最頂尖的核物理學家彙聚一堂,其中有海森堡、泡利、居裏夫人等。泡利在會上提出,β衰變過程中能量守恒定律仍然是正確的,能量虧損的原因是因為中子作為一種大質量的中性粒子在衰變過程中變成了質子、電子和一種質量小的中性粒子,正是這種小質量粒子將能量帶走了。泡利預言的這個竊走能量的“小偷”就是中微子。粒子物理的研究結果表明,構成物質世界的最基本的粒子有十二種,包括六種誇克(上、下、奇異、粲、底、頂),三種帶電輕子(電子、繆子和陶子)和三種中微子(電子中微子,繆中微子和陶中微子)。中微子是1930年德國物理學家泡利為了解釋β衰變中能量似乎不守恒而提出的,20世紀50年代才被實驗觀測到。中微子隻參與非常微弱的弱相互作用,具有最強的穿透力。
穿越地球直徑那麼厚的物質,在100億個中微子中隻有一個會與物質發生反應,因此中微子的檢測非常困難。正因為如此,在所有的基本粒子中,人們對中微子了解最晚,也最少。實際上,大多數粒子物理和核物理過程都伴隨著中微子的產生,例如核反應堆發電(核裂變)、太陽發光(核聚變)、天然放射性(β衰變)、超新星爆發、宇宙射線等等。宇宙中充斥著大量的中微子,大部分為宇宙大爆炸的殘留,大約為每立方厘米100個。1998年,日本超級神崗實驗以確鑿的證據發現了中微子振蕩現象,即一種中微子能夠轉換為另一種中微子。這間接證明了中微子具有微小的質量。此後,這一結果得到了許多實驗的證實。中微子振蕩尚未完全研究清楚,它不僅在微觀世界最基本的規律中起著重要作用,而且與宇宙的起源與演化有關,例如宇宙中物質與反物質的不對稱很有可能是由中微子造成。由於探測技術的提高,人們可以觀測到來自天體的中微子,導致了一種新的天文觀測手段的產生。美國正在南極洲冰層中建造一個大的中微子天文望遠鏡——冰立方。法國、意大利、俄羅斯也分別在地中海和貝加爾湖中建造中微子天文望遠鏡。KamLAND觀測到了來自地心的中微子,可以用來研究地球構造。中微子在物理學當中充當著神秘的角色。中微子是當前粒子物理、天體物理、宇宙學、地球物理的交叉前沿學科,本身性質也有大量謎團尚未解開。首先它的質量尚未直接測到,大小未知;其次,它的反粒子是它自己還是另外一種粒子;第三,中微子振蕩還有兩個參數未測到,而這兩個參數很可能與宇宙中反物質缺失之謎有關;第四,它有沒有磁矩;等等。因此,中微子成了粒子物理、天體物理、宇宙學、地球物理的交叉與熱點學科。在中微子研究這一領域,大部分成績均為日本和美國取得。1942年,我國科學家王淦昌提出利用軌道電子俘獲檢測中微子的可行方案,美國人艾倫成功地用這種方法證明了中微子的存在。20世紀80年代,中國原子能科學研究院進行了中微子靜止質量的測量,證明電子反中微子的靜止質量在30電子伏特以下。中微子振蕩研究的下一步發展,首先必須利用核反應堆精確測量中微子混合角theta13。位於中國深圳的大亞灣核電站具有得天獨厚的地理條件,是世界上進行這一測量的最佳地點。由中國科學院高能物理研究所領導的大亞灣反應堆中微子實驗於2006年正式啟動,聯合了國內十多家研究所和大學,美國十多家國家實驗室和大學,以及香港、中國台灣、俄羅斯、捷克的研究機構。實驗總投資約3億元人民幣,預期2010年建成。它的建成運行將使中國在中微子研究中占據重要的國際地位。中微子具有質量,這是很早就提出過的物理概念。但是人類對於中微子的性質的研究還是非常有限的。我們至今不能非常確定地知道:幾種中微子是同一種實物粒子的不同表現,還是不同性質的幾種物質粒子,或者是同一種粒子組成的差別相當微小的具有不同質量的粒子。我們相信,隨著人類認識的深化,科學技術的發展,中微子之謎終究是會被攻破的。