7.2有關Laguerre多項式的算符恒等式(1 / 1)

=2-2nH2n(X^),(7.148)

當a→x 以及a→y,得到如下積分公式:

n!∫d2βπL-1br2n(2β22)

exp-|β|2+xβ*-yβ

=2-2nH2nx+y2e-xy.(7.149)

再考慮式(7.130)和式(7.142),得到

(-1)nn!L-1br2n(X^2)=2∫d2βπ〈-β|∶X^2n∶|β〉e2(β*a-aβ+aa)

=(-1)n2n+1∫d2βπβ2n2e2(-|β|2+β*a-aβ+aa)

=(-1)nn!L-1br2n(X^2),(7.150)

2n+1∫d2βπβ2n2

exp2(-|β|2+β*a-aβ+aa)

=n!L-1br2n(X^2).(7.151)

也有

2n+1∫d2βπβ2n2

exp2(-|β|2+xβ*-yβ)

=n!L-1br2n12(x+y)2e-2xy.(7.152)

=2-2nH2n(X^),(7.148)

當a→x 以及a→y,得到如下積分公式:

n!∫d2βπL-1br2n(2β22)

exp-|β|2+xβ*-yβ

=2-2nH2nx+y2e-xy.(7.149)

再考慮式(7.130)和式(7.142),得到

(-1)nn!L-1br2n(X^2)=2∫d2βπ〈-β|∶X^2n∶|β〉e2(β*a-aβ+aa)

=(-1)n2n+1∫d2βπβ2n2e2(-|β|2+β*a-aβ+aa)

=(-1)nn!L-1br2n(X^2),(7.150)

2n+1∫d2βπβ2n2

exp2(-|β|2+β*a-aβ+aa)

=n!L-1br2n(X^2).(7.151)

也有

2n+1∫d2βπβ2n2

exp2(-|β|2+xβ*-yβ)

=n!L-1br2n12(x+y)2e-2xy.(7.152)