之一還小。
我剛才描述的是處理額外維的傳統手段。它意味著我們有較大的機會探測到額外維的僅有之處是宇宙的極早期。然而最近有人提出更激進的設想,額外維中的一維或者二維尺度可以大的多,甚至可以是無限的。因為在粒子加速器中沒有看到這些大的額外維,所以必須假定所有的物質粒子被局限在時空的一個膜或麵上,而不能自由地通過大的額外維傳播。光也必須被限製在膜上,否則的話,我們就已經探測到大的額外維,粒子之間的核力的情形也是如此。
另一方麵,引力是所有形式的能量或質量之間的普適的力。它不能被限製於膜上,相反地,它要滲透到整個空間。因為引力不僅能夠耗散開,而且能夠大量發散到額外維中去,那麼它隨距離的衰減應該比電力更厲害。電力是被限製在膜上的。然而我們從行星軌道的觀測得知,太陽的萬有引力拉力,隨著行星離開太陽越遠越下降,和電力隨距離減小的方式相同。
這樣,如果我們的確生活在一張膜上,就必須有某種原因說明為何引力不從膜往很遠處散開,而是被限製在它的附近。一種可能性是額外維在第二張影子膜上終結,第二張膜離我們生活其中的膜不遠。我們看不到這張影子膜,因為光隻能沿著膜旅行,而不能穿過兩膜之間的空間。然而我們可以感覺到影子膜上物體的引力。可能存在影子星係、影子恒星甚至影子人,他們也許正為感受到從我們膜上的物質來的引力而大大驚訝。對我們而言,這類影子物體呈現成暗物質,那是看不見的物質。但是其引力可以被感覺到。
事實上,我們在自身的星係中具有暗物質的證據。我們能看到的物質的總量不足以讓引力把正在旋轉的星係抓在一起。除非存在某種暗物質,該星係將會飛散開。類似地,我們在星係團中觀測到的物質總量也不足以防止它們散開,這樣又必須存在暗物質。當然,影子膜並不是暗物質的必要條件。暗物質也許不過是某種很難觀測到的物質的形式,例如wimp(弱相互作用重粒子),或者褐矮星以及低質量恒星,後者從未熱到足以使氫燃燒。
因為引力發散到我們的膜和影子膜之間的區域,在我們膜上的兩個鄰近物體間的萬有引力隨距離的下降會比電力更厲害,因為後者被局限於膜上。我們可能在實驗室中,利用劍橋的卡文迪許爵士發明的儀器測量引力的短距離行為。迄今我們沒有看到和電力的任何差異,這意味著膜之間距離不能超過一厘米。按照天文學的標準,這是微小的,但是和其他額外維的上限相比是巨大的。正在進行短距離下引力的新測量,用以檢測“膜世界”的概念。
另一種可能性是,額外維不在第二張膜上終結,額外維是無限的,但是正如馬鞍麵一樣被高度彎曲。莉薩朗達爾和拉曼桑德魯姆指出,這種曲率的作用和第二張膜相當類似。一張膜上的一個物體的引力影響,將不會在額外維中發散到無限去。正如在影子膜模型中,引力場長距離的衰減正好用以解釋行星軌道和引力的實驗室測量,但是在短距離下引力變化的更快速。然而在朗達爾-桑德魯姆模型和影子膜模型之中存在一個重大的差別。物體受引力影響而運動,會產生引力波。引力波是以光速通過時空傳播的曲率的漣漪。正如光的電磁波,引力波也必須攜帶能量,這是一個在對雙脈衝星觀測中被證實的預言。
如果我們的確生活在具有額外維的時空中的一張膜上,膜上的物體運動產生的引力波就會向其它維傳播。如果還有第二張影子膜,它們就會反射回來,並且被束縛在兩張膜之間。另一方麵,如果隻有單獨的一張膜,而額外維無限的延伸,就像朗達爾-桑德魯姆模型中那樣,引力波會全部逃逸,從我們的膜世界把能量帶走。這似乎違背了一個基本物理原則,即能量守恒定律。它是講總能量維持不變。然而,隻是因為我們對所發生事件的觀點被限製在膜上,所以就顯得定律被違反了。一個能看到額外維的天使就知道能量是常數,隻不過更多的能量被發散出去。