每個觀察者都可以用雷達去發出光脈衝或無線電‘波’來測定一個事件在何處何時發生。脈衝的一部分由事件反‘射’回來後,觀察者可在他接收到回‘波’時測量時間。事件的時間可認為是發出脈衝和脈衝反‘射’回來被接收的兩個時刻的中點;而事件的距離可取這來回過程時間的一半乘以光速。(在這意義上,一個事件是發生在指定空間的一點以及指定時間的一點的某件事。)這個意思已顯示在圖2。1上。這是空間-時間圖的一個例子。利用這個步驟,作相互運動的觀察者對同一事件可賦予不同的時間和位置。沒有一個特別的觀察者的測量比任何其他人更正確,但所有這些測量都是相關的。隻要一個觀察者知道其他人的相對速度,他就能準確算出其他人該賦予同一事件的時間和位置。
現在我們正是用這種方法來準確地測量距離,因為我們可以比測量長度更為準確地測量時間。實際上,米是被定義為光在以鉑原子鍾測量的0。000000003335640952秒內走過的距離(取這個特別的數字的原因是,因為它對應於曆史上的米的定義——按照保存在巴黎的特定鉑‘棒’上的兩個刻度之間的距離)。同樣,我們可以用叫做光秒的更方便更新的長度單位,這就是簡單地定義為光在一秒走過的距離。現在,我們在相對論中按照時間和光速來定義距離,這樣每個觀察者都自動地測量出同樣的光速(按照定義為每0。000000003335640952秒之1米)。沒有必要引入以太的觀念,正如麥克爾遜——莫雷實驗顯示的那樣,以太的存在是無論如何檢測不到的。
一個事件P的過去和將來光錐將空間-時間分成三個區域(圖2。5):這事件的絕對將來是P的將來光錐的內部區域,這是所有可能被發生在P的事件影響的事件的集合。從P出發的信號不能傳到P光錐之外的事件去,因為沒有東西比光走得更快,所以它們不會被P發生的事情所影響。過去光錐內部區域的點是P的絕對過去,它是所有這樣的事件的集合,從該事件發出的以等於或低於光速的速度傳播的信號可到達P。所以,這是可能影響事件P的所有事件的集合。如果人們知道過去某一特定時刻在事件P的過去光錐內發生的一切,即能預言在P將會發生什麼。空間-時間的其餘部分即是除P的將來和過去光錐之外的所有事件的集合。這一部分的事件既不受P的影響,也不能影響P。例如,假定太陽就在此刻停止發光,它不會對此刻的地球發生影響,因為地球的此刻是在太陽熄滅這一事件的光錐之外(圖2。6)。我們隻能在8分鍾之後才知道這一事件,這是光從太陽到達我們所‘花’的時間。隻有到那時候,地球上的事件才在太陽熄滅這一事件的將來光錐之內。同理,我們也不知道這一時刻發生在宇宙中更遠地方的事:我們看到的從很遠星係來的光是在幾百萬年之前發出的,在我們看到的最遠的物體的情況下,光是在80億年前發出的。這樣當我們看宇宙時,我們是在看它的過去。如果人們忽略引力效應,正如1905年愛因斯坦和彭加勒所做的那樣,人們就得到了稱為狹義相對論的理論。對於空間-時間中的每一事件我們都可以做一個光錐(所有從該事件發出的光的可能軌跡的集合),由於在每一事件處在任一方向的光的速度都一樣,所以所有光錐都是全等的,並朝著同一方向。這理論又告訴我們,沒有東西走得比光更快。這意味著,通過空間和時間的任何物體的軌跡必須由一根落在它上麵的每一事件的光錐之內的線來表示(圖2。7)。
狹義相對論非常成功地解釋了如下事實:對所有觀察者而言,光速都是一樣的(正如麥克爾遜——莫雷實驗所展示的那樣),並成功地描述了當物體以接近於光速運動時的行為。然而,它和牛頓引力理論不相協調。牛頓理論說,物體之間的吸引力依賴於它們之間的距離。這意味著,如果我們移動一個物體,另一物體所受的力就會立即改變。或換言之,引力效應必須以無限速度來傳遞,而不像狹義相對論所要求的那樣,隻能以等於或低於光速的速度來傳遞。愛因斯坦在1908年至1914年之間進行了多次不成功的嚐試,企圖去找一個和狹義相對論相協調的引力理論。1915年,他終於提出了今天我們稱之為廣義相對論的理論。
愛因斯坦提出了革命‘性’的思想,即引力不像其他種類的力,而隻不過是空間-時間不是平坦的這一事實的後果。正如早先他假定的那樣,空間-時間是由於在它中間的質量和能量的分布而變彎曲或“翹曲”的。像地球這樣的物體,並非由於稱為引力的力使之沿著彎曲軌道運動,而是它沿著彎曲空間中最接近於直線的稱之為測地線的軌跡運動。一根測地線是兩鄰近點之間最短(或最長)的路徑。例如,地球的表麵是一彎曲的二維空間。地球上的測地線稱為大圓,是兩點之間最近的路(圖2。8)。由於測地線是兩個機場之間的最短程,這正是領航員叫飛行員飛行的航線。在廣義相對論中,物體總是沿著四維空間-時間的直線走。盡管如此,在我們的三維空間看起來它是沿著彎曲的途徑(這正如同看一架在非常多山的地麵上空飛行的飛機。雖然它沿著三維空間的直線飛,在二維的地麵上它的影子卻是沿著一條彎曲的路徑)。
光線也必須沿著空間-時間的測地線走。空間是彎曲的事實又一次意味著,在空間中光線看起來不是沿著直線走。這樣,廣義相對論預言光線必須被引力場所折彎。譬如,理論預言,由於太陽的質量的緣故,太陽近處的點的光錐會向內稍微偏折。這表明,從遠處恒星發出的剛好通過太陽附近的光線會被折彎很小的角度,對於地球上的觀察者而言,這恒星顯得是位於不同的位置(圖2。9)。當然,如果從恒星來的光線總是在靠太陽很近的地方穿過,則我們無從知道這光線是被偏折了,還是這恒星實際上就是在我們所看到的地方。然而,當地球繞著太陽公轉,不同的恒星從太陽後麵通過,並且它們的光線被偏折。所以,相對於其他恒星而言,它們改變了表觀的位置。
在正常情況下,去觀察到這個效應是非常困難的,這是由於太陽的光線使得人們不可能觀看天空上出現在太陽附近的恒星。然而,在日食時就可能觀察到,這時太陽的光線被月亮遮住了。由於第一次世界大戰正在進行,愛因斯坦的光偏折的預言不可能在1915年立即得到驗證。直到1919年,一個英國的探險隊從西非觀測日食,指出光線確實像理論所預言的那樣被太陽所偏折。這次德國人的理論為英國人所證明被歡呼為戰後兩國和好的偉大行動。具有諷刺意味的是,後來人們檢查這回探險所拍的照片,發現其誤差和所企圖測量的效應同樣大。他們的測量純屬是運氣,或是已知他們所要得的結果的情形,這在科學上是普遍發生的。然而,光偏折被後來的許多次觀測準確地證實。
另一廣義相對論的預言是,在像地球這樣的大質量的物體附近,時間顯得流逝得更慢一些。這是因為光能量和它的頻率(每秒鍾裏光振動的次數)有一關係:能量越大,則頻率越高。當光從地球的引力場往上走,它失去能量,因而其頻率下降(這表明兩個‘波’峰之間的時間間隔變大)。從在上麵的某個人來看,下麵發生的每一件事情都顯得需要更長的時間。利用一對安裝在一個水塔的頂上和底下的非常準確的鍾,這個預言在1962年被驗證到。發現底下的那隻更接近地球的鍾走得更慢些,這和廣義相對論完全一致。地球上的不同高度的鍾的速度不同,這在目前具有相當的實用上的重要‘性’,這是因為人們要用衛星發出的信號來作非常‘精’確的導航。如果人們對廣義相對論的預言無知,所計算的位置將會錯幾英哩!
牛頓運動定律使空間中絕對位置的觀念告終。而相對論擺脫了絕對時間。考慮一對雙生子,假定其中一個孩子去山頂上生活,而另一個留在海平麵,第一個將比第二個老得快。這樣,如果他們再次相會,一個會比另一個更老。在這種情形下,年紀的差別非常小。但是,如果有一個孩子在以近於光速運動的空間飛船中作長途旅行,這種差別就會大得多。當他回來時,他會比留在地球上另一個人年輕得多。這即是被稱為雙生子的佯謬。但是,隻是對於頭腦中仍有絕對時間觀念的人而言,這才是佯謬。在相對論中並沒有一個唯一的絕對時間,相反地,每個人都有他自己的時間測度,這依賴於他在何處並如何運動。
1915年之前,空間和時間被認為是事件在其中發生的固定舞台,而它們不受在其中發生的事件的影響。即便在狹義相對論中,這也是對的。物體運動,力相互吸引並排斥,但時間和空間則完全不受影響地延伸著。空間和時間很自然地被認為無限地向前延伸。
然而在廣義相對論中,情況則相當不同。這時,空間和時間變成為動力量:當一個物體運動時,或一個力起作用時,它影響了空間和時間的曲率;反過來,空間-時間的結構影響了物體運動和力作用的方式。空間和時間不僅去影響、而且被發生在宇宙中的每一件事所影響。正如一個人不用空間和時間的概念不能談宇宙的事件一樣,同樣在廣義相對論中,在宇宙界限之外講空間和時間是沒有意義的。
在以後的幾十年中,對空間和時間的新的理解是對我們的宇宙觀的變革。古老的關於基本上不變的、已經存在並將繼續存在無限久的宇宙的觀念,已為運動的、膨脹的並且看來是從一個有限的過去開始並將在有限的將來終結的宇宙的觀念所取代。這個變革正是下一章的內容。幾年之後又正是我研究理論物理的起始點。羅如果在一個清澈的、無月亮的夜晚仰望星空,能看到的最亮的星體最可能是金星、火星、木星和土星這幾顆行星,還有巨大數目的類似太陽、但離開我們遠得多的恒星。事實上,當地球繞著太陽公轉時,某些固定的恒星相互之間的位置確實起了非常微小的變化——它們不是真正固定不動的。這是因為它們距離我們相對靠近一些。當地球繞著太陽公轉時,相對於更遠處的恒星的背景,我們從不同的位置觀測它們。這是幸運的,因為它使我們能直接測量這些恒星離開我們的距離,它們離我們越近,就顯得移動得越多。最近的恒星叫做普羅希馬半人馬座,它離我們大約4光年那麼遠(從它發出的光大約‘花’4年才能到達地球),也就是大約23萬億英哩的距離。大部分其他可用‘肉’眼看到的恒星離開我們的距離均在幾百光年之內。與之相比,我們太陽僅僅在8光分那麼遠!可見的恒星散布在整個夜空,但是特別集中在一條稱為銀河的帶上。遠在公元1750年,就有些天文學家建議,如果大部分可見的恒星處在一個單獨的碟狀的結構中,則銀河的外觀可以得到解釋。碟狀結構的一個例子,便是今天我們叫做螺旋星係的東西。隻有在幾十年之後,天文學家威廉?赫歇爾爵士才非常‘精’心地對大量的恒星的位置和距離進行編目分類,從而證實了自己的觀念。即便如此,這個思想在本世紀初才完全被人們接受。
1924年,我們現代的宇宙圖象才被奠定。那是因為美國天文學家埃得溫?哈勃證明了,我們的星係不是唯一的星係。事實上,還存在許多其他的星係,在它們之間是巨大的空虛的太空。為了證明這些,他必須確定這些星係的距離。這些星係是如此之遙遠,不像鄰近的恒星那樣,它們確實顯得是固定不動的。所以哈勃被迫用間接的手段去測量這些距離。眾所周知,恒星的表觀亮度決定於兩個因素:多少光被輻‘射’出來(它的絕對星等)以及它離我們多遠。對於近處的恒星,我們可以測量其表觀亮度和距離,這樣我們可以算出它的絕對亮度。相反,如果我們知道其他星係中恒星的絕對亮度,我們可用測量它們的表觀亮度的方法來算出它們的距離。哈勃注意到,當某些類型的恒星近到足夠能被我們測量時,它們有相同的絕對光度;所以他提出,如果我們在其他星係找出這樣的恒星,我們可以假定它們有同樣的絕對光度——這樣就可計算出那個星係的距離。如果我們能對同一星係中的許多恒星這樣做,並且計算結果總是給出相同的距離,則我們對自己的估計就會有相當的信賴度。