霍金的時間簡史2(2 / 3)

傑?彭羅斯和我指出,從愛因斯坦廣義相對論可推斷出,宇宙必須有個開端,並可能有個終結。

埃得溫?哈勃用上述方法算出了九個不同星係的距離。現在我們知道,我們的星係隻是用現代望遠鏡可以看到的幾千億個星係中的一個,每個星係本身都包含有幾千億顆恒星。圖3。1所示的便是一個螺旋星係的圖,從生活在其他星係中的人來看我們的星係,想必也是類似這個樣子。我們生活在一個寬約為10萬光年並慢慢旋轉著的星係中;在它的螺旋臂上的恒星繞著它的中心公轉一圈大約‘花’幾億年。我們的太陽隻不過是一個平常的、平均大小的、黃‘色’的恒星,它靠近在一個螺旋臂的內邊緣。我們離開亞裏士多德和托勒密的觀念肯定是相當遙遠了,那時我們認為地球是宇宙的中心!

恒星離開我們是如此之遠,以致使我們隻能看到極小的光點,而看不到它們的大小和形狀。這樣怎麼能區分不同的恒星種類呢?對於絕大多數的恒星,隻有一個特征可供觀測——光的顏‘色’。牛頓發現,如果太陽光通過一個稱為棱鏡的三角形狀的玻璃塊,就會被分解成像彩虹一樣的分顏‘色’(它的光譜)。將一個望遠鏡聚焦在一個單獨的恒星或星係上,人們就可類似地觀察到從這恒星或星係來的光譜線。不同的恒星具有不同的光譜,但是不同顏‘色’的相對亮度總是剛好和一個紅熱的物體發出的光譜完全一致。(實際上,從一個不透明的灼熱的物體發出的光,有一個隻依賴於它的溫度的特征光譜——熱譜。這意味著可以從恒星的光譜得知它的溫度。)並且,我們發現,某些非常特定的顏‘色’在恒星光譜裏找不到,這些失去的譜線可以因不同的恒星而異。既然我們知道,每一化學元素都有非常獨特的吸收光譜線族,將它們和恒星光譜中失去的譜線相比較,我們就可以準確地確定恒星大氣中存在什麼元素。

在20年代天文學家開始觀察其他星係中的恒星光譜時,他們發現了最奇異的現象:它們和我們的銀河係一樣具有吸收的特征線族,隻是所有這些線族都向光譜的紅端移動了同樣相對的量。為了理解這個含意,我們必須先理解多普勒效應。我們已經知道,可見光即是電磁場的起伏或‘波’動,其頻率(或每秒的振動數)高達4到7百萬億次的振動。對不同頻率的光,人的眼睛看起來為不同顏‘色’,最低的頻率出現在光譜的紅端,而最高頻率在藍端。想像在離開我們一個固定的距離處有一光源——例如恒星——以固定的頻率發出光‘波’,顯然我們接受到的‘波’頻率和發出時的頻率一樣(星係的引力場沒有足夠強到對它有明顯的效應)。現在假定這恒星光源開始向我們運動,當光源發出第二個‘波’峰時,它離開我們更近一些,這樣此‘波’峰到達我們處所用的時間比恒星不動時要少。這意味著,這兩個‘波’峰到達我們的時間間隔變小了,所以我們接收到的‘波’的每秒振動數(頻率)比恒星靜止時高。同樣,如果光源離我們而去,我們接收到的‘波’頻率就變低了。所以對於光來說,這意味著,當恒星離開我們而去時,它們的光譜向紅端移動(紅移);而當恒星靠近我們而來時,光譜則藍移。這個稱之為多普勒效應的頻率和速度的關係是我們日常所熟悉的,例如我們聽路上來往小汽車的聲音:當它開過來時,它的發動機的音調變高(對應於聲‘波’的高頻率);當它通過我們身邊而離開時,它的音調變低。光‘波’或無線電‘波’的行為與之類似。警察就是利用多普勒效應的原理,以無線電‘波’脈衝從車上反‘射’回來的頻率來測量車速。

在哈勃證明了其他星係存在之後的幾年裏,他‘花’時間為它們的距離以及觀察到的光譜分類。那時候大部份人相信,這些星係的運動相當紊‘亂’,所以預料會發現和紅移光譜一樣多的藍移光譜。但是,十分令人驚異的是,他發現大部份星係是紅移的——幾乎所有都遠離我們而去!更驚異的是1929年哈勃發表的結果:甚至星係紅移的大小也不是雜‘亂’無章的,而是和星係離開我們的距離成正比。換句話講,星係越遠,則它離開我們運動得越快!這表明宇宙不可能像原先人們所想像的那樣處於靜態,而實際上是在膨脹;不同星係之間的距離一直在增加著。

宇宙膨脹的發現是20世紀最偉大的智慧革命之一。事後想起來,何以過去從來沒有人想到這一點?!牛頓或其他人應該會意識到,靜態的宇宙在引力的影響下會很快開始收縮。然而現在假定宇宙正在膨脹,如果它膨脹得相當慢,引力會使之最終停止膨脹,然後開始收縮。但是,如果它膨脹得比某一臨界速率更快,引力則永遠不足夠強而使其膨脹停止,宇宙就永遠繼續膨脹下去。這有點像一個人在地球表麵引燃火箭上天時發生的情形,如果火箭的速度相當慢,引力將最終使之停止並折回地麵;另一方麵,如果火箭具有比某一臨界值(大約每秒7英哩)更高的速度,引力的強度不足以將其拉回,所以它將繼續永遠飛離地球。19世紀、18世紀甚至17世紀晚期的任何時候,人們都可以從牛頓的引力論預言出宇宙的這個行為。然而,靜態宇宙的信念是如此之強,以至於一直維持到了20世紀的早期。甚至愛因斯坦於1915年發表其廣義相對論時,還是如此之肯定宇宙必須是靜態的,以使得他在其方程中不得不引進一個所謂的宇宙常數來修正自己的理論,使靜態的宇宙成為可能。愛因斯坦引入一個新的“反引力”,這力不像其他的力那樣,不發源於任何特別的源,而是空間-時間結構所固有的。他宣稱,空間-時間有一內在的膨脹的趨向,這可以用來剛好去平衡宇宙間所有物質的相互吸引,結果使宇宙成為靜態的。當愛因斯坦和其他物理學家正在想方設法避免廣義相對論的非靜態宇宙的預言時,看來隻有一個人,即俄國物理學家和數學家亞曆山大?弗利德曼願意隻用廣義相對論著手解釋它。

弗利德曼對於宇宙作了兩個非常簡單的假定:我們不論往哪個方向看,也不論在任何地方進行觀察,宇宙看起來都是一樣的。弗利德曼指出,僅僅從這兩個觀念出發,我們就應該預料宇宙不是靜態的。事實上,弗利德曼在1922年所做的預言,正是幾年之後埃得溫?哈勃所觀察到的結果。

很清楚,關於在任何方向上宇宙都顯得是一樣的假設實際上是不對的。例如,正如我們所看到的,我們星係中的其他恒星形成了橫貫夜空的叫做銀河係的光帶。但是如果看得更遠,星係數目就或多或少顯得是同樣的。所以假定我們在比星係間距離更大的尺度下來觀察,而不管在小尺度下的差異,則宇宙確實在所有的方向看起來是大致一樣的。在很長的時間裏,這為弗利德曼的假設——作為實際宇宙的粗糙近似提供了充分的證實。但是,近世出現的一樁幸運的事件所揭示的事實說明了,弗利德曼假設實際上異常準確地描述了我們的宇宙。

1965年,美國新澤西州貝爾電話實驗室的阿諾?彭齊亞斯和羅伯特?威爾遜正在檢測一個非常靈敏的微‘波’探測器時(微‘波’正如光‘波’,但是它的頻率隻有每秒100億次振動的數量級),他們的檢測器收到了比預想的還要大的噪聲。彭齊亞斯和威爾遜為此而憂慮,這噪聲不像是從任何特別方向來的。首先他們在探測器上發現了鳥糞並檢查了其他可能的故障,但很快就排除了這些可能‘性’。他們知道,當探測器傾斜地指向天空時,從大氣層裏來的噪聲應該比原先垂直指向時更強,因為光線在沿著靠近地平線方向比在頭頂方向要穿過更厚的大氣。然而,不管探測器朝什麼方向,這額外的噪聲都是一樣的,所以它必須是從大氣層以外來的,並且在白天、夜晚、整年,也就是甚至地球繞著自己的軸自轉或繞太陽公轉時也是一樣的。這表明,這輻‘射’必須來自太陽係以外,甚至星係之外,否則當地球的運動使探測器指向不同方向時,噪聲必須變化。事實上,我們知道這輻‘射’必須穿過我們可觀察到的宇宙的大部分,並且由於它在不同方向都一樣,至少在大尺度下,這宇宙也必須是各向同‘性’的。現在我們知道,不管我們朝什麼方向看,這噪聲的變化總不超過萬分之一。這樣,彭齊亞斯和威爾遜無意中極其‘精’確地證實了弗利德曼的第一個假設。

大約同時,在附近的普林斯頓的兩位美國物理學家,羅伯特?狄克和詹姆士?皮帕爾斯也對微‘波’感興趣。他們正在研究喬治?伽莫夫(曾為亞曆山大?弗利德曼的學生)的一個見解:早期的宇宙必須是非常密集的、白熱的。狄克和皮帕爾斯認為,我們仍然能看到早期宇宙的白熱,這是因為光是從它的非常遠的部分來,剛好現在才到達我們這兒。然而,宇宙的膨脹使得這光被如此厲害地紅移,以至於現在隻能作為微‘波’輻‘射’被我們所看到。正當狄克和皮帕爾斯準備尋找這輻‘射’時,彭齊亞斯和威爾遜聽到了他們所進行的工作,並意識到,自己已經找到了它。為此,彭齊亞斯和威爾遜被授予1978年的諾貝爾獎(狄克和皮帕爾斯看來有點難過,更別提伽莫夫了!)

現在初看起來,關於宇宙在任何方向看起來都一樣的所有證據似乎暗示,我們在宇宙的位置有點特殊。特別是,如果我們看到所有其他的星係都遠離我們而去,那似乎我們必須在宇宙的中心。然而,還存在另外的解釋:從任何其他星係上看宇宙,在任何方向上也都一樣。我們知道,這正是弗利德曼的第二個假設。我們沒有任何科學的證據去相信或反駁這個假設。我們之所以相信它隻是基於謙虛:因為如果宇宙隻是在我們這兒看起來各向同‘性’,而在宇宙的其他地方並非如此,則是非常奇異的!在弗利德曼模型中,所有的星係都直接相互離開。這種情形很像一個畫上好多斑點的氣球被逐漸吹脹。當氣球膨脹時,任何兩個斑點之間的距離加大,但是沒有一個斑點可認為是膨脹的中心。並且斑點相離得越遠,則它們互相離開得越快。類似地,在弗利德曼的模型中,任何兩個星係互相離開的速度和它們之間的距離成正比。所以它預言,星係的紅移應與離開我們的距離成正比,這正是哈勃所發現的。盡管他的模型的成功以及預言了哈勃的觀測,但是直到1935年,為了響應哈勃的宇宙的均勻膨脹的發現,美國物理學家哈瓦?羅伯遜和英國數學家阿瑟?瓦爾克提出了類似的模型後,弗利德曼的工作在西方才被普遍知道。

一個人繞宇宙一周最終可回到出發點的思想是科學幻想的好題材,但實際上它並沒有多大意義。因為可以指出,一個人還沒來得及繞回一圈,宇宙已經坍縮到了零尺度。你必須旅行得比光‘波’還快,才能在宇宙終結之前繞回到你的出發點——而這是不允許的!