[1] Arce F, Novick I, Mandelblat-cerf Y, et al. Combined adaptiveness of specific motor cortical ensembles underlies learning[J]. J Neurosci, 2010, 30(15): 5415-5525.

[2] Asanuma H, Rosén I. Topographical organization of cortical efferent zones projecting to distal forelimb muscles in the monkey[J]. Exp Brain Res, 1972, 14(3): 243-256.

[3] Ashe J, Georgopoulos AP. Movement parameters and neural activity in motor cortex and area[J]. Cereb Cortex, 1994, 4(6): 590-600.

[4] Caminiti R, Johnson PB, Urbana A. Making arm movements within different parts of space: dynamic aspects in the primate motor cortex[J]. J Neurosci, 1990, 10(7): 2039-2058.

[5] Carmena JM, Lebedev MA, Crist RE, et al. Learning to control a brain-machine interface for reaching and grasping by primates[J]. PLoS Biol, 2003, 1(2): 193-208.

[6] Cheney PD, Fetz EE. Functional classes of primate corticomotoneuronal cells and their relation to active force[J]. J Neurophysiol, 1980, 44(4): 773-791.

[7] Cheney PD, Fetz EE. Comparable patterns of muscle facilitation evoked by individual corticomotoneuronal(CM) cells and by single intracorticalmicrostimuli in primates: evidence of functional groups of CM cells[J]. J Neurophysiol, 1985, 53(3): 786-804.

[8] Cheney PD, Fetz EE, Palmer SS. Patterns of facilitation and suppression of antagonist forelimb muscles from motor cortex sites in the awake monkey[J]. J Neurophysiol, 1985, 53(3): 805-820.

[9] Evarts EV. Relation of pyramidal tract activity to force exerted during voluntary movement[J]. J Neurophysiol, 1968, 31(1): 14-27.

[10] Evarts EV, Fromm C, Kr?ller J, et al. Motor cortex and control of finely graded forces[J]. J Neurophysiol,1983, 49(5): 1199-1215.

[11] Fetz EE, Cheney PD. Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells[J]. J Neurophysiol, 1980, 44(4): 751-772.

[12] Fetz EE, Finocchio DV. Correlations between activity of motor cortex neurons and arm muscles during operantly conditioned response patterns[J]. Exp Brain Res, 1975, 23(3): 217-240.

[13] Georgopoulos AP, Ashe J, Smyrnis N, et al. The motor cortex and the coding of force[J]. Science, 1992,256(5064): 1692-1695.

[14] Georgopoulos AP, Caminiti R, Kalaska JF, et al.Spatial coding of movement: A hypothesis concerning the coding of movement direction by motor cortical populations[J]. Exp Brain Res Suppl, 1983, 49(7): 327-336.

[15] Georgopoulos AP, Kalaska JF, Caminiti R, et al. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex[J]. J Neurosci, 1982, 2(11): 1527-1537.

[16] Georgopoulos AP, Merchant H, Naselaris T, et al. Mapping of the preferred direction in the motor cortex[J].Proceedings of the National Academy of Sciences USA, 2007, 104(26): 11068-11072.

[17] Gribble PL, Scott SH. Overlap of internal models in motor cortex for mechanical loads during reaching[J].Nature, 2002, 417(6892): 938-941.

[18] Griffin DM, Hudson HM, Belhaj-Sa?fA, et al. Stability of output effects from motor cortex to forelimb muscles in primates[J]. J Neurosci, 2009, 29(6): 1915-1927.

[19] Griffin DM, Hudson HM, Belhaj-Sa?f A, et al. Do corticomotoneuronal cells predict target muscle EMG activity?[J]. J Neurophysiol, 2008, 99(3): 1169-1186.

[20] He SQ, Dum RP, Strick PL. Topographic organization of corticospinal projections from the frontal lobe:motor areas on the lateral surface of the hemisphere[J]. J Neurosci, 1993, 13(3): 952-980.

[21] HochbergLR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia[J]. Nature, 2006, 442(7099): 164-171.

[22] Hoffman DS, Strick PL. Effects of a primary motor cortex lesion on step-tracking movements of the wrist[J]. J Neurophysiol, 1995, 73(2): 891-895.

[23] Humphrey DR, Schmidt EM, Thompson WD. Predicting measures of motor performance from multiple cortical spike trains[J]. Science, 1970, 170(3959): 758-762.

[24] Humphrey DR, Tan ji J. What features of voluntary motor control are encoded in the neuronal discharge of different cortical areas?[C]. In: DR Humphrey, H-J Freund(eds). Motor Control: Concepts and Issues. New York: Wiley, 1991. 413-443.

[25] Jackson A, Mavoori J, Fetz EE. Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey[J]. J Neurophysiol, 2007, 97(1): 360-374.

[26] Jacobs KM, Donoghue JP. Reshaping the cortical motor map by unmasking latent intracortical connections[J].Science, 1991, 251(4996): 944-947.

[27] Kakei S, Hoffman DS, Strick PL. Muscle and movement representations in the primary motor cortex[J].Science, 1991, 285(5436): 2136-2139.

[28] Kalaska JF, Cohen DA, Hyde ML, et al. A comparison of movement direction-related versus load direction related activity in primate motor cortex, using a two-dimensional reaching task[J]. J Neurosci, 1989, 9(6):2080-2102.

[29] Lawrence DG, Kuypers HG. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions[J]. Brain, 1968, 91(1): 1-14.

[30] Lemon RN. Functional Properties of monkey motor cortex neurones receiving afferent input from the hand and fingers[J]. J Physiol, 1981, 311: 497-519.

[31] Li CS, Padoa-Schioppa C, Bizzi E.Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external forcefield[J]. Neuron, 2001, 30(2): 593-607.

[32] Maier MA, Bennett KM, Hepp-Reymond MC, et al.Contribution of the monkey corticomotoneuronal system to the control of force in precision grip[J]. J Neurophysiol, 1993, 69(3): 772-785.

[33] Mckiernan BJ, Marcario JK, Kerrer JH, et al.Correlations between corticomotoneuronal (CM)cell postspike effects and cell-target muscle covariation[J]. J Neurophysiol, 2000, 83(1): 99-115.

[34] Moran DW, Schwartz AB.Motor cortical activity during drawing movements: population representation during spiral tracing[J]. J Neurophysiol, 1999, 82(5): 2693-2704.

[35] Morrow MM, Jordan LR, Miller LE. Direct comparison of the task-dependent discharge of M1 in hand space and muscle space[J]. J Neurophysiol, 2007, 97(2): 1786-1798.

[36] Muir RB, Lemon RN. Corticospinal neurons with a special role in precision grip[J]. Brain Res, 1983, 261(2):312-316.

[37] Murphy JT, Kwan MC, Mackay WA, et al. Spatial organization of precentral cortex in awake primates. Ⅲ.Input-output coupling[J]. J Neurophysiol, 1978, 41(5): 1132-1139.

[38] Musallam S, Corneil BD, Greger B, et al. Cognitive control signals for neural prosthetics[J]. Science, 2004,305(5681): 258-262.

[39] Nudo RJ, Milliken GW, Jenkins WM, et al. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys[J]. J Neurosci, 1996, 16(2): 785-807.

[40] Li C-SR, Padoa-Schioppa C, Bizzi E. Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field[J]. Neuron, 2001, 30(2): 593-607.

[41] Padoa-Schioppa C, Li CS, Bizzi E. Neuronal activity in the supplementary motor area of monkeys adapting to anew dynamic environment[J]. J Neurophysiol, 2004, 91(1): 449-473.

[42] Paninski L, Fellows MR, Hatsopoulos NG, et al. Spatiotemporal tuning of motor cortical neurons for hand position and velocity[J]. J Neurophysiol, 2004, 91(1): 515-532.

[43] Park MC, Belhaj- Sa?f A, Cheney PD. Properties of primary motor cortex output to forelimb muscles in rhesus macaques[J]. J Neurophysiol, 2004, 92(5): 2968-2984.

[44] Park MC, Belhaj-Sa?f A, Gordon M, et al. Consistent features in the forelimb representation of primary motor cortex in rhesus macaques[J]. J Neurosci, 2001, 21(8): 2784-2792.

[45] Paz R, Boraud T, Natan C, et al. Preparatory activity in motor cortex reflects learning of local visuomotor

skills[J]. Nat Neurosci, 2003, 6(8): 882-890.

[46] Rathelot JA, Strick PL. Muscle representation in the macaque motor cortex: an anatomical perspective[J].Proceedings of the National Academy of Sciences USA, 2006, 103(21): 8257-8262.

[47] Rioult-Pedotti MS, Friedman D, Hess G, et al. Strengthening of horizontal cortical connections following skill learning[J]. Nat Neurosci, 1998, 1(3): 230-234.

[48] Rosén I, Asanuma H. Peripheral afferent inputs to the forelimb area of the monkey motor cortex: input-output relations[J]. Exp Brain Res, 1972, 14(3): 257-273.

[49] Sanes JN, Suner S, Lando JF, et al. Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury[J]. Proceedings of the National Academy of Sciences USA, 1988, 85(6):2003-2007.

[50] Schwartz AB. Motor cortical activity during drawing movements: population representation during sinusoidal tracing[J]. J Neurophysiol, 1993, 70(1): 28-36.

[51] Schwartz AB, Kettner RE, Georgopoulos AP. Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement[J]. J Neurosci, 1988, 8(8): 2928-2937.

[52] Scott SH, Kalaska JF. Reaching movements with similar hand paths but different arm orientations. I Activity of individual cells in motor cortex[J]. J Neurophysiol, 1997, 77(2): 826-852.

[53] Sergio LE, Kalaska JF. Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation[J]. J Neurophysiol, 2003, 89(1): 212-228.

[54] Sergio LE, Hamel-Paquet C, Kalaska JF. Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks[J]. J Neurophysiol, 2005, 94(4): 2353-2378.

[55] Shen L, Alexander GE. Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex[J]. J Neurophysiol, 1997, 77(3): 1171-1194.

[56] Shinoda Y, Yokota J, Futami T.Divergent projections of individual corticospinal axons to motoneurons of multiple muscles in the monkey[J]. NeurosciLett, 1981, 23(1): 7-12.