[57] Smith AM, Hepp-Reymond MC, Wyss UR. Relation of activity in precentral cortical neurons to force and rate of force change during isometric contractions of finger muscles[J]. Exp Brain Res, 1975, 23(3): 315-332.

[58] Thach WT. Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next arm movement in motor cortex and cerebellum[J]. J Neurophysiol, 1978, 41(3):654-676.

[59] Townsend BR, Paninski L, Lemon RN. Linear coding of muscle activity in primary motor cortex and cerebellum[J]. J Neurophysiol, 2006, 96(5): 2578-2592.

[60] Velliste M, Perel S, Spalding MC, et al. Cortical control of a prosthetic arm for self-feeding[J]. Nature, 2008,453(7198): 1098-1101.

[61] Wise SP, Moody SL, Blomstrom KJ, et al. Changes in motor cortical activity during visuomotor adaptation[J]. Exp Brain Res, 1998, 121(3): 285-299.

[62] AjemianR, Green A, Bullock D, et al. Assessing the function or motor cortex: single-neuron models of how neural response is modulated by limb biomechanics[J]. Neuron, 2008, 58(3): 414-428.

[63] BuchER ,Brasted PJ, Wise SP. Comparison of population activity in dorsal premotor cortex and putamen during the learning of arbitrary visuomotormappings[J]. Exp Brain Res, 2006, 169(1): 69-84.

[64] Cattaneo L, Fabbri-Destro M, Boria S, et al. Impairment of actions chains in autism and its possible role in intention understanding[J]. ProcNatlAcadSci USA, 2007, 104(45): 17825-17830.

[65] Cisek P, CrammondDJ ,Kalaska JF. Neural activity in primary motor and dorsal premotor cortex in reaching tasks with the contralateral versus ipsilateralarm[J]. J Neurophysiol, 2003, 89(2): 922-942.

[66] CisekP, Kalaska JE. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action[J]. Neuron, 2005, 45(5): 801-814.

[67] Cisek P, Kalaska JF. Neural correlates of mental rehearsal in dorsal premotor cortex[J]. Nature, 2004,431(7011): 993-996.

[68] Cramond DJ, Kalaska JF. Prior information in motor and premotor cortex: activity in the delay period and effect on pre-movement activity[J]. J Neurophysiol, 2000, 84(2): 986-1005.

[69] Cui H, Andersen RA. Posterior parietal cortex encodes autonomously selected motor plans[J]. Neuron, 2007,56(3): 552-559.

[70] Deecke L, Scheid P, Kornhuber HH. Distribution of readiness potential, pre-motion positivity, and motor potential of the human cerebral cortex preceding voluntary finger movements[J]. Exp Brain Res, 1967, 7(2):158-168.

[71] Duhamel JR, Bremmer F, Hamed SB, et al. Spatial invariance of visual receptive fields in parietal cortex neurons[J]. Nature, 1997, 389(6653): 845-848.

[72] Duhamel JR, Colby CL, Goldberg ME. Ventral intraparietal area of the macaque: congruent visual and somatic response properties[J]. J Neurophysiol, 1998, 79(1): 126-136.

[73] Fattori P, Kutz DF, Breveglieri R, et al. Spatial tuning of reaching activity in the medial parieto-occipital cortex (area V6A) of macaque monkey[J]. Eur I Neurosci, 2005, 22(4): 956-972.

[74] Fogassi L, Ferrari PF, Gesierich B, et al. Parietal lobe: from action organization to intention understanding[J].Science, 2005, 308(5722): 662-667.

[75] Fogassi L, Gallese V, Fadiga L, et al. Coding of peripersonal space in inferior premotor cortex (area F4)[J]. J Neurophysiol, 1996, 76(1): 141-157.

[76] Gallese V, Fadiga L, Fogassi L, et al. Action recognition in the premotor cortex[J]. Brain,1996, 119(2):593-609.

[77] Graziano MSA, Yap GS, Gross CG. Coding of visual space by premotor neurons[J]. Science, 1994,266(5187): 1054-1057.

[78] Tsai CG, Chen CC, Chou TL, et al. Neural mechanisms involved in the oral representation of percussion music: An fMRI study[J]. Brain and cognition, 2010, 74(2): 123-131.

[79] Hoshi E, Tanji J. Differential involvement of neurons In the dorsal and ventral premotor cortex during processing of visual signals for action planning[J]. J Neurophysiol, 2006, 95(6): 3596-3616.

[80] Hoshi E, Tanji J. Differential roles of neuronal activity in the supplementary and presupplementary motor areas: from information retrieval to motor planning and execution[J]. J Neurophysiol, 2004, 92(6):3482-3499.

[81] Jeannerod M, Arbib MA, Rizzolatti G, et al. Grasping objects: the cortical mechanisms of visuomotor trans formation [J]. Trends Neurosci, 1995, 18(7): 314-320.

[82] Jeannerod M, Decety J.Mental motor imagery: a window into the representational stages of action[J].CurrOpinNeurobiol, 1995, 5(6): 727-732.

[83] Kakei S. Hoffman DS, Strick PL. Direction of action is represented in the ventral premotor cortex[J]. Nat Neurose, 2001, 4(10): 1020-1025.

[84] Kalaska JE, Crammond DJ. Deciding not to go: neuronal correlates of response selection in a GO\/NOGO task in primate premotor and parietal cortex[J]. Cereb Cortex, 1995, 5(5): 410-428.

[85] Libet B. Mind Time: The Temporal Factor in Consciousness[M]. Cambridge, MA: Harvard Univ Press, 2004,255-256.

[86] Luppino G, Matelli M, Camarda RM, et al. Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracorticalmicrostimulation study in the macaque monkey[J]. J Comp Neurol, 1991, 311(4): 463-482.

[87] Massion J. Movement, posture and equilibrium: interaction and coordination[J]. ProgNeurobiol, 1992, 38(1):35-56.

[88] Mitz AR, Godschalk M, Wise SP.Learning-dependent neuronal activity in the premotor cortex: activity during the acquisition of conditional motor associations[J]. J Neurosci, 1991, 11(6): 1855-1872.

[89] Murata A, Fadiga L, Fogassi L, et al. Object representation in the ventral premotor cortex (area F5) of the monkey[J]. J Neurophysiol, 1997, 78(4): 2226-2230.

[90] Murata A, Gallese V, Luppino G, et al.Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP[J]. J Neurophysiol, 2000, 83(5): 2580-2601.

[91] Nakayama Y, Yamagata T, Tanji J, et al. Transformation of a virtual action plan into a motor plan in the premotor cortex[J]. J Neurosci, 2008, 28(41): 10287-10297.

[92] Ochia T, Muchiake H, Tanji J. Involvement of the ventral premotor cortex in controlling image motion of the hand during performance of a target-capturing task[J]. Cereb Cortex, 2005, 15(7): 929-937.

[93] Rizzolatti G, Camarda R, Fogassi L, et al. Functional organization of inferior area 6 in the macaque monkey.Ⅱ. Area F5 and the control of distal movement[J]. Exp Brain Res, 1988, 71(3): 491-507.

[94] Rizzolatti G, Gentilucci M, Camarda RM, et al. Neurons related to reaching-grasping arm movements in the rostral part of area 6 (area 6abeta)[J]. Exp Brain Res, 1990, 82(2): 337-350.

[95] Rizzolatti G, Fadiga L, Gallese V, et al. Premotor cortex and the recognition of motor actions[J]. Brain Res Cogn Brain Res, 1996, 3(2): 131-141.

[96] Romo R, Hernández A, Zainos A. Neuronal correlates of a perceptual decision in ventral premotor cortex[J].Neuron, 2004, 41(1): 165-173.

[97] Sakata H, Taira M, Murata A, et al. Neural mechanism of visual guidance of hand action in the parietal cortex of the monkey[J]. Cereb Cortex, 1995, 5(5): 429-438.

[98] Schieber MH, Hibbard LS. How somatotopic is the motor cortex hand area?[J]. Science, 1993, 261(5120):489-492.

[99] Wallis JD, Miller EK. From rule to response: neuronal processes in the premotor and prefrontal cortex[J]. J Neurophysiol, 2003, 90(3): 1790-1806.

[100] Yamagata T, Nakayama Y, Tanji J, et al. Processing of visual signals for direct specification of motor targets and for conceptual representation of action targets in the dorsal and ventral premotor cortex[J]. J Neurophysiol, 2009, 102(6): 3280-3294.

[101] Adam A, De Luca CJ. Firing rates of motor units in human vastus lateralis muscle during fatiguing isometric contractions[J]. Journal of Applied Physiology, 2005, 99(1): 268-280.

[102] Al-Mulla M R, Sepulveda F, Colley M. A review of non-invasive techniques to detect and predict localised muscle fatigue[J]. Sensors, 2011, 11(4): 3545-3594.

[103] Ament W, Bonga G J J, Hof A L, et al. Electromyogram median power frequency in dynamic exercise at medium exercise intensities[J]. European Journal of Applied Physiology and Occupational Physiology, 1996,74(1–2): 180-186.

[104] Anmuth C J, Goldberg G, Mayer N H. Fractal dimension of electromyographic signals recorded with surface electrodes during isometric contractions is linearly correlated with muscle activation[J]. Muscle & Nerve,1994, 17(8): 953-954.

[105] Arabadzhiev T I, Dimitrov V G, Dimitrova N A, et al. Interpretation of EMG integral or RMS and estimates of \"neuromuscular efficiency\" can be misleading in fatiguing contraction[J]. J Electromyogr Kinesiol, 2010,20(2): 223-232.

[106] Arendt-Nielsen L, Mills K R. Muscle fibre conduction velocity, mean power frequency, mean EMG voltage and force during submaximal fatiguing contractions of human quadriceps[J]. European Journal of Applied Physiology and Occupational Physiology, 1988, 58(1–2): 20-25.

[107] Arendt-Nielsen L, Sinkj?r T. Quantification of human dynamic muscle fatigue by electromyography and kinematic profiles[J]. Journal of Electromyography & Kinesiology, 1991, 1(1): 1-8.

[108] Baker A J, Kostov K G, Miller R G, et al. Slow force recovery after long-duration exercise: metabolic and activation factors in muscle fatigue[J]. Journal of Applied Physiology, 1993, 74(5): 2294-2300.

[109] Barry BK, Enoka RM. The neurobiology of muscle fatigue: 15 years later[J]. Integrative & Comparative Biology, 2007, 47(4): 465-473.

[110] Whittaker RG. The fundamentals of electromyography[J]. Pract Neurol. 2012, 12(3): 187-194.

[111] Bigland-Ritchie B, Donovan E F , Roussos C S. Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts[J]. Journal of Applied Physiology, 1981, 51(5): 1300-1305.