微積分的創立是牛頓最卓越的數學成就。牛頓為解決運動問題,才創立這種和物理概念直接聯係的數學理論的,牛頓稱之為"流數術"。它所處理的一些具體問題,如切線問題、求積問題、瞬時速度問題以及函數的極大和極小值問題等,在牛頓前已經得到人們的研究了。但牛頓超越了前人,他站在了更高的角度,對以往分散的結論加以綜合,將自古希臘以來求解無限小問題的各種技巧統一為兩類普通的算法——微分和積分,並確立了這兩類運算的互逆關係,從而完成了微積分發明中最關鍵的一步,為近代科學發展提供了最有效的工具,開辟了數學上的一個新紀元。
牛頓沒有及時發表微積分的研究成果,他研究微積分可能比萊布尼茨早一些,但是萊布尼茨所采取的表達形式更加合理,而且關於微積分的著作出版時間也比牛頓早。
在牛頓和萊布尼茨之間,為爭論誰是這門學科的創立者的時候,竟然引起了一場悍然大波,這種爭吵在各自的學生、支持者和數學家中持續了相當長的一段時間,造成了歐洲大陸的數學家和英國數學家的長期對立。英國數學在一個時期裏閉關鎖國,囿於民族偏見,過於拘泥在牛頓的“流數術”中停步不前,因而數學發展整整落後了一百年。
1707年,牛頓的代數講義經整理後出版,定名為《普遍算術》。他主要討論了代數基礎及其(通過解方程)在解決各類問題中的應用。書中陳述了代數基本概念與基本運算,用大量實例說明了如何將各類問題化為代數方程,同時對方程的根及其性質進行了深入探討,引出了方程論方麵的豐碩成果,如:他得出了方程的根與其判別式之間的關係,指出可以利用方程係數確定方程根之冪的和數,即“牛頓冪和公式”。
牛頓對解析幾何與綜合幾何都有貢獻。他在1736年出版的《解析幾何》中引入了曲率中心,給出密切線圓(或稱曲線圓)概念,提出曲率公式及計算曲線的曲率方法。並將自己的許多研究成果總結成專論《三次曲線枚舉》,於1704年發表。此外,他的數學工作還涉及數值分析、概率論和初等數論等眾多領域。
牛頓在前人工作的基礎上,提出“流數(fluxion)法”,建立了二項式定理,並和G.W.萊布尼茨幾乎同時創立了微積分學,得出了導數、積分的概念和運算法則,闡明了求導數和求積分是互逆的兩種運算,為數學的發展開辟了一個新紀元。
在一六六五年,剛好二十二歲的牛頓發現了二項式定理,這對於微積分的充分發展是必不可少的一步。二項式定理在組合理論、開高次方、高階等差數列求和,以及差分法中有廣泛的應用。
二項式級數展開式是研究級數論、函數論、數學分析、方程理論的有力工具。在今天我們會發覺這個方法隻適用於n是正整數,當n是正整數1,2,3,.......,級數終止在正好是n+1項。如果n不是正整數,級數就不會終止,這個方法就不適用了。但是我們要知道那時,萊布尼茨在一六九四年才引進函數這個詞,在微積分早期階段,研究超越函數時用它們的級來處理是所用方法中最有成效的。
牛頓的哲學思想基本屬於自發的唯物主義,他承認時間、空間的客觀存在。如同曆史上一切偉大人物一樣,牛頓雖然對人類作出了巨大的貢獻,但他也不能不受時代的限製。例如,他把時間、空間看作是同運動著的物質相脫離的東西,提出了所謂絕對時間和絕對空間的概念;他對那些暫時無法解釋的自然現象歸結為上帝的安排,提出一切行星都是在某種外來的“第一推動力”作用下才開始運動的說法。
《自然哲學的數學原理》牛頓最重要的著作,1687年出版。該書總結了他一生中許多重要發現和研究成果,其中包括上述關於物體運動的定律。他說,該書“所研究的主要是關於重、輕流體抵抗力及其他吸引運動的力的狀況,所以我們研究的是自然哲學的數學原理。”該書傳入中國後,中國數學家李善蘭曾譯出一部分,但未出版,譯稿也遺失了。現有的中譯本是數學家鄭太樸翻譯的,書名為《自然哲學之數學原理》,1931年商務印書館初版,1957、1958年兩次重印。
亞裏士多德的哲學講求事物的和諧,求和諧思想是正確的,但亞裏士多德認為天上的日、月、星辰的運行軌道是圓形,因為隻有圓運動才是完美的、和諧的,而地上的運動,例如重物直線下落是凡俗的。古希臘哲學家的和諧思想不能在天與地之間連貫。
到了17世紀,牛頓用引力理論和運動三定律把天上行星和它們的衛星運動規律,同地上重力下墜的現象統一起來,實現了天上人間的統一,這是牛頓在自然哲學上的偉大貢獻。眾所周知,牛頓在理解光的本質上持微粒說。但他在同胡、惠更斯等討論光的本質時,說光具有這種或那種本能激發以太的振動。這意味著以太是光振動的媒質(見以太論)。於此,似乎牛頓對光的雙重性有所理解;其實不然,他對以太媒質之存在極似空氣之無所不在,隻是遠為稀薄、微細而具有強有力的彈。他又申說,就是由於以太的動物氣質才使肌肉收縮和伸長,動物得以運動。
他又進一步以以太來解釋光的反射與折射,透明與不透明,以及顏色的產生,他甚至於設想地球的引力是由於有如以大氣質不斷凝聚使然。《原理》第二編第六章詮釋的結尾說,從記憶中他曾做實驗傾向於以太充斥於所有物體的空隙之中的說法,雖然以太對於引力沒有覺察的影響。14、15世紀以來歐洲的學者對以太著了迷,以太學說風靡一時。當時科學巨擘笛卡兒對以太存在深信不疑。他認為行星之運行可以以太旋渦來解釋。以太學說成為一時哲學思潮。尊重實驗的牛頓也不免卷入這股哲學思潮激流中去,傾向於它存在。當時人們對超距作用看法不一。牛頓曾經指出他的引力相互作用定律,並不認為是最終的解釋,而隻是從實驗中歸納出來的一條規則。因此,牛頓並未就引力本質作出結論。
牛頓在科學上的成就須由他的哲學思想和科學方法來尋根求源。牛頓的學生R.科茨曾在《原理》第2版序言中道出了其中的奧妙。古希臘、羅馬的哲學家憑著對自然現象的觀察和思考(中國先秦時代也有類似之處)總結出論斷,例如泰勒斯的學說:萬物的根源是水。即使像德謨克利特、盧克萊修的原子論,現在來評價還是很高的。但是他們的方法憑天才的臆測、思維與辯論,稱之為思辨哲學。到了中世,經院哲學統治著歐洲,科學、哲學淪為神學的奴婢。
到15、16世紀,哥白尼、G.布魯諾、伽利略等人不畏坐牢、火刑等堅持不屈地向教會作鬥爭,掙脫了侍奉上帝的桎梏。對自然現象的觀察、測量和實驗的風氣逐漸形成了。在物理學科中伽利略的實驗工作是實驗物理學的開端,牛頓深受其影響。隨後牛頓使作為實驗科學的物理學形成一個光輝體係,同時也使科學實驗方法闖入了哲學思想的殿堂。
牛頓認為從現象中可以得出科學原理,或者說科學基本原理可以從現象中導得或推出。牛頓在《原理》和《光學》兩書中明白表達他的做學問的方法,即要明白無誤地區別猜測、假設和實驗結果(及由此而歸納得出的結論),還有從某些假設條件下所得到數學推導。《原理》第一編十四章中處理細微粒子的運動和第二編命題23中設想氣體中有相互排斥質點的模型都是牛頓運用具有物理實質性的數學模型的例子,但是他對這些問題缺少實質性的實驗證據,未能寫出無可辯駁的論述。論者可能認為牛頓隻注重從實驗運用歸納法得出定律,而無視演繹法的重要性。這是有違事實的。
1713年牛頓在出版《原理》第2版時在給他的學生科茨的信中提到運動定律是居於首位的定律或稱之為公理,並說它們都是從現象中推斷或稱演繹而來的,並運用歸納法使之普適化。牛頓說:“這是一個命題在哲學中所能達到最高境界的例證。”誠然,必須看到歸納與演繹不能人為地對立起來。
恩格斯指出“歸納和演繹正如分析和綜合一樣,是必然相互聯係著的。不應當犧牲一個而把另一個捧到天上去”。牛頓在此早著先鞭。關於實驗與假設之間的關係,牛頓在各種場合都有論述。他在給奧爾登堡的信中說:“進行哲學研究的最好和最可靠的方法,看來第一是勤勤懇懇地探索事物的屬性並用實驗來證明這些屬性。然後進而建立一些假說,用以解釋這些事物的本性。”給科茨信中說:“任何不是從現象中推論出來的說法都應稱之為假說,而這樣一種假說無論是形而上學的還是物理學的,無論屬於隱蔽性質的還是力學性質的,在實驗哲學中都沒有它們的地位。”牛頓這些論述奠定了自然哲學的基礎,啟開了實驗科學的大門,300年來為自然科學的繁榮立下了不朽功勳。
牛頓研究事物規律的方法不同於那些隻從簡單的物理假設出發的人,而是通過邏輯的演繹法得到對事物現象的解釋。愛因斯坦指出:“牛頓才第一個成功地找到了一個用公式清楚表述的基礎,從這基礎出發他用數學的思維,邏輯地、定量地演繹出範圍很廣的現象並且同經驗相符合。”“在牛頓之前還沒有什麼實際的結果支持那種認為物理因果關係有完整鏈條的信念。”牛頓是完整的物理因果關係創始人;而因果關係正是經典物理學的基石。
牛頓出身於篤信基督教的家庭。在劍橋求學時代,他就懷著宗教生活裏亦如科學實驗一樣可以自由自在的幻想和工作。《原理》完成後,他便著手有關基督教《聖經》的研究,並開始寫這方麵的著作,手稿達150萬字之多,絕大部分未發表。可見牛頓在宗教著述上浪費了大量時間的精力。關於牛頓在1692~1693年間答複本特萊大主教4封信論造物主(上帝)之存在,最為後人所詬病。所謂神臂就是第一推動出於第四封信中。從現代宇宙學來說,第一推動完全可能在物理框架中解決,而無需“神助”。
牛頓反對當時的英國國教。他反對三一教義,但不鮮明表白自己的意誌,隻是隱蔽地表明不願擔任聖職。總之,在對於宗教問題上牛頓比之於他的先驅者如哥白尼、布魯諾、伽利略等赴湯蹈火而不辭的精神,則遜色多了。
1942年愛因斯坦為紀念牛頓誕生300周年而寫的文章,對牛頓的一生作如下的評價“隻有把他的一生看作為永恒真理而鬥爭的舞台上一幕才能理解他”。此讚語最恰當不過的了。
牛頓在科學上的巨大成就連同他的樸素的唯物主義哲學觀點和一套初具規模的物理學方法論體係,給物理學及整個自然科學的發展,給18世紀的工業革命、社會經濟變革及機械唯物論思潮的發展以巨大影響。這裏隻簡略勾畫一些輪廓。
牛頓的哲學觀點與他在力學上的奠基性成就是分不開的,一切自然現象他都力圖力學觀點加以解釋,這就形成了牛頓哲學上的自發的唯物主義,同時也導致了機械論的盛行。事實上,牛頓把一切化學、熱、電等現象都看作“與吸引或排斥力有關的事物”。例如他最早闡述了化學親和力,把化學置換反應描述為兩種吸引作用的相互競爭;認為“通過運動或發酵而發熱”;火藥爆炸也是硫磺、炭等粒子相互猛烈撞擊、分解、放熱、膨脹的過程,等等。
這種機械觀,即把一切的物質運動形式都歸為機械運動的觀點,把解釋機械運動問題所必需的絕對時空觀、原子論、由初始條件可以決定以後任何時刻運動狀態的機械決定論、事物發展的因果律等等,作為整個物理學的通用思考模式。可以認為,牛頓是開始比較完整地建立物理因果關係體係的第一人,而因果關係正是經典物理學的基石。