第六部分

古埃及的數學

一個民族的數學知識首先是從數字開始。在古埃及有很係統的表示數字的方法,這也是他們能夠完成像金字塔這樣的大工程的基礎之一。

古埃及人沒有零的概念,他們記述從1到9都用畫豎的方式來代表。1就是一豎,9就是九豎,從10開始就用物品來代替了。10是一段繩子,而一卷繩子表示100。荷花代表1000,一根手指代表10000,蝌蚪代表100000,而一個舉著雙手的人代表著1000000。在表示5000000的時候,古埃及人並不是用5道豎加一個舉手的人,而是把那個舉手的人重複畫5次。這稍微有一點複雜,不過也算是一種習慣,而且相當精確。

除了數字,古埃及人還會用精確的方法表示分數,他們用在這個符號下麵寫數字的方式表示這個分數是多少分之一。對一些特殊的分數,他們用特殊的符號表示,這些符號據說來自一個神話傳說,比如1/2,1/4,1/8,1/16,1/32和1/64。

古埃及的數字符號傳說鷹神荷魯斯在為自己的父親奧西裏斯複仇的時候與他的歹毒叔父塞特發生了一場慘烈的戰鬥。戰鬥中塞特挖掉了荷魯斯的一隻眼珠,並把它撕成了碎片,這些分數就用這些碎片表示。比如眼睛的一部分為1/2,眼珠表示1/4,眼眉表示1/8等,有意思的是這些數字加起來並不是一隻完整的眼睛而是63/64。古埃及人也一定計算出了這個結果,他們說丟掉的那1/64由智慧之神填補。

在表示一些分子不為1的分數時,古埃及人用分數相加來表示,比如2/5就是由1/3和1/15的和來表示。從這種分數的表示方法,我們就很輕易地得出結論:古埃及人已經熟練地掌握了分數的加減。

這些知識主要來自兩張紙莎草文書:一片叫做莫斯科草片文書,一共25題。另外一片叫做萊茵德草片文書,這也是記錄古埃及數學常識的最著名的一片文書,共有85題之多。是英國人Henry Rhind於1858年發現的,現存大英博物館。因為作者是一個叫 Ahmes的人,所以又叫Ahmes草片文書。它的開篇有一句很有意思的話:獲知一切奧秘的指南。如果單看這句話很容易把這片紙草誤認為埃及版的“十萬個為什麼”。

對於這兩片紙草,有人認為它是小學生的練習本,有人則認為是學校的教科書,不管是什麼,我們都能從中管窺古埃及的數學水平。

在Ahmes草片文書的第31題,記錄了一個一元一次方程:一個數字,它的2/3,它的1/2,它的1/7和它的全部加起來等於33。這個題目沒有問答,但意思顯然是讓我們求解這個數字,這樣的題目即便放到現在,沒有初中一年級的代數知識,也是很難回答的,而且它的答案也是一個分數。

從這張紙草的第63題,可以看出數學的目的還是服務於生活的,這個題目是這樣的:把700塊麵包分給4個人,第一個人得2/3,第二個人得1/2,第三個人得1/3,第四個人得1/4。這個題目給出了計算方法,而且有正確的答案。

不過我們還是很輕易地看到了編寫過程中的漏洞,得出的這個結果是400,也就是說第一個人得到的是400的2/3,而不是那700塊麵包的2/3,這不符合我們把總數定為“1”的習慣。而且第一個人得當了400的2/3也不是一個整數,看來要真分這些麵包,他還是要另掰一塊帶回去的了,現在我們在教案編寫上已經知道避免這樣的問題了。

古埃及人沒有專門的乘除符號,他們用一雙走近的腿表示相加,離開的腿自然是減號。他們的乘除法計算也是以加減法為基礎的,這其實很符合乘除法的計算原理。

5000年前刻在燧石板上的一組數字因為要丈量土地麵積,所以他們在麵積計算方麵的公式非常準確。圓形和四邊形的麵積和現在的計算結果非常近似,圓周率一般近似地取3。因為金字塔是一種棱錐體,他們同樣掌握了計算棱錐體的體積公式,這對采集石料有理論上的指導意義。